建设项目环境影响报告表
（污染影响类）
（公示版）

项目名称：重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目

建设单位（盖章）：重庆市固体废弃物运输有限公司西部分公司

编制日期：2023 年 8 月

中华人民共和国生态环境部制
编制单位和编制人员情况表

<table>
<thead>
<tr>
<th>项目编号</th>
<th>tx95lk</th>
</tr>
</thead>
<tbody>
<tr>
<td>建设项目名称</td>
<td>重庆市固体废弃物运输有限公司西部分公司走马垃圾站液化气装置项目</td>
</tr>
<tr>
<td>建设项目类别</td>
<td>50—119加油、加气站</td>
</tr>
<tr>
<td>环境影响评价文件类型</td>
<td>报告表</td>
</tr>
</tbody>
</table>

一、建设单位情况

<table>
<thead>
<tr>
<th>单位名称（盖章）</th>
<th>重庆市固体废弃物运输有限公司西部分公司</th>
</tr>
</thead>
<tbody>
<tr>
<td>统一社会信用代码</td>
<td>91500107MA611LR9T</td>
</tr>
<tr>
<td>法定代表人（签章）</td>
<td>梁忠伟</td>
</tr>
<tr>
<td>主要负责人（签字）</td>
<td>李绪超</td>
</tr>
<tr>
<td>直接负责的主管人员（签字）</td>
<td>李绪超</td>
</tr>
</tbody>
</table>

二、编制单位情况

<table>
<thead>
<tr>
<th>单位名称（盖章）</th>
<th>重庆展奇生态环境咨询服务有限公司</th>
</tr>
</thead>
<tbody>
<tr>
<td>统一社会信用代码</td>
<td>91500242084631394</td>
</tr>
</tbody>
</table>

三、编制人员情况

1. **编制主持人**

<table>
<thead>
<tr>
<th>姓名</th>
<th>职业资格证书管理号</th>
<th>信用编号</th>
<th>签字</th>
</tr>
</thead>
<tbody>
<tr>
<td>陈晓舟</td>
<td>08355543507550032</td>
<td>BH025327</td>
<td></td>
</tr>
</tbody>
</table>

2. **主要编制人员**

<table>
<thead>
<tr>
<th>姓名</th>
<th>主要编写内容</th>
<th>信用编号</th>
<th>签字</th>
</tr>
</thead>
<tbody>
<tr>
<td>刘富琳</td>
<td>建设项目工程分析、区域环境质量现状、环境保护目标及评价标准、主要环境影响和保护措施、环境保护措施监督检查清单</td>
<td>BH007134</td>
<td></td>
</tr>
<tr>
<td>陈晓舟</td>
<td>建设项目基本情况、结论</td>
<td>BH025327</td>
<td></td>
</tr>
</tbody>
</table>
确认函

重庆高新区生态环境局：

我单位委托重庆展吉生态环境咨询服务有限公司编制完成的《重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目环境影响报告表》（以下简称“报告表”）目前属于上报审批阶段，评价文件全文我公司已经审阅，《报告表》（公示版）中除已删除的内容外，其他内容不涉及国家秘密、商业秘密、个人隐私、国家安全、公共安全、经济安全和社会稳定等内容，我公司现同意对《报告表》（公示版）进行公示。

特此说明。

建设单位（盖章）：重庆市固体废弃物运输有限公司西部分公司

2023年 月 日
编制人员承诺书

本人刘富琳(身份证件号码500106199512301329)郑重承诺：本人在重庆展吉生态环境咨询服务有限公司单位（统一社会信用代码915002420846531394）全职工作，本次在环境影响评价信用平台提交的下列第1项相关情况信息真实准确、完整有效。

| 1.首次提交基本情况信息 |
| 2.从业单位变更的 |
| 3.调离从业单位的 |
| 4.建立诚信档案后取得环境影响评价工程师职业资格证书的 |
| 5.被注销后从业单位变更的 |
| 6.被注销后调回原从业单位的 |
| 7.编制单位终止的 |
| 8.补正基本情况信息 |

承诺人(签字)：刘富琳

年 月 日
编制人员承诺书

本人陈晓舟(身份证件号码510212198302200319)郑重承诺：
本人在重庆展吉生态环境咨询服务有限公司单位（统一社会信用代码915002420846531394）全职工作，本次在环境影响评价信用平台提交的下列第1项相关情况信息真实准确、完整有效。

1. 首次提交基本情况信息
2. 从业单位变更的
3. 调离从业单位的
4. 建立诚信档案后取得环境影响评价工程师职业资格证书的
5. 被注销后从业单位变更的
6. 被注销后调回原从业单位的
7. 编制单位终止的
8. 补正基本情况信息

承诺人(签字)：

年 月 日
编制单位承诺书

本单位重庆展吉生态环境咨询服务有限公司（统一社会信用代码915002420846531394）郑重承诺：本单位符合《建设项目环境影响报告书（表）编制监督管理办法》第九条第一款规定，无该条第三款所列情形，不属于（属于/不属于）该条第二款所列单位；本次在环境影响评价信用平台提交的下列第2项相关情况信息真实准确、完整有效。

1. 首次提交基本情况信息
2. 单位名称、住所或者法定代表人（负责人）变更的
3. 出资人、举办单位、业务主管部门或者挂靠单位等变更的
4. 未发生第3项所列情形，与《建设项目环境影响报告书（表）编制监督管理办法》第九条规定的符合性发生变更的
5. 编制人员从业单位已变更或者已调离从业单位的
6. 编制人员未发生第5项所列情形，全职情况发生变更，不再属于本单位全职人员的
7. 补正基本情况信息

承诺单位（公章）：
年 月 日
建设项目环境影响报告书（表）
编制情况承诺书

本单位重庆展吉生态环境咨询服务有限公司（统一社会信用代码915002420846531394）郑重承诺：本单位符合《建设项目环境影响报告书（表）编制监督管理办法》第九条第一款规定，无该条第三款所列情形，不属于（属于/不属于）该条第二款所列单位；本次在环境影响评价信用平台提交的由本单位主持编制的重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目环境影响报告书（表）基本情况信息真实准确、完整有效，不涉及国家秘密；该项目环境影响报告书（表）的编制主持人为陈晓舟（环境污染评价工程师职业资格证书管理号08355543507550032，信用编号BH025327），主要编制人员包括刘富琳（信用编号BH007134）、陈晓舟（信用编号BH025327）等2人，上述人员均本单位全职人员，本单位和上述编制人员未被列入《建设项目环境影响报告书（表）编制监督管理办法》规定的限期整改名单，环境影响评价失信“黑名单”。

承诺单位（公章）：
年 月 日
一、建设项目基本情况

<table>
<thead>
<tr>
<th>建设项目名称</th>
<th>重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目</th>
</tr>
</thead>
<tbody>
<tr>
<td>项目代码</td>
<td>2306-500356-04-01-112963</td>
</tr>
<tr>
<td>建设单位联系人</td>
<td>李绪超</td>
</tr>
<tr>
<td>联系方式</td>
<td>17782316255</td>
</tr>
<tr>
<td>建设地点</td>
<td>重庆市高新区走马镇大石村</td>
</tr>
<tr>
<td>地理坐标</td>
<td>(106度17分32.066秒, 29度28分11.404秒)</td>
</tr>
<tr>
<td>国民经济行业类别</td>
<td>F5265 机动车燃油零售</td>
</tr>
<tr>
<td>建设性质</td>
<td>□新建（迁建） 改建 扩建 技术改造</td>
</tr>
<tr>
<td>建设项目申报情形</td>
<td>☑ 首次申报项目 不予批准后再次申报项目 超五年重新审核项目 重大变动重新报批项目</td>
</tr>
<tr>
<td>项目审批（核准/备案）部门（选填）</td>
<td>重庆高新区改革发展局</td>
</tr>
<tr>
<td>项目审批（核准/备案）文号（选填）</td>
<td>2306-500356-04-01-112963</td>
</tr>
<tr>
<td>总投资（万元）</td>
<td>70 环保投资（万元） 5</td>
</tr>
<tr>
<td>环保投资占比（%）</td>
<td>7.14% 施工工期 6 个月</td>
</tr>
<tr>
<td>是否开工建设</td>
<td>☑ 否： 是； 地下（地表）面积（m²） 120</td>
</tr>
</tbody>
</table>

专项评价设置情况

<table>
<thead>
<tr>
<th>专项评价的类别</th>
<th>设置原则</th>
<th>本项目情况</th>
<th>专项评价设置情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>大气</td>
<td>排放废气含有毒有害污染物一、二噁英、苯并[a]芘、氰化物、氯气且厂界外500米范围内有环境空气保护目标2的建设项目</td>
<td>本项目外排废气为非甲烷总烃，排放废气不涉及《有毒有害大气污染物名录》中的污染物、二噁英、苯并[a]芘、氰化物、氯气。</td>
<td>不设置</td>
</tr>
<tr>
<td>地表水</td>
<td>新增工业废水直排建设项目（槽罐车外送污水处理厂的除外）；新增废水直排的污水集中处理厂</td>
<td>本项目废水排入走马乐园污水处理厂进行深度处理，为间接排放。</td>
<td>不设置</td>
</tr>
<tr>
<td>环境风险</td>
<td>有毒有害和易燃易爆危险物质存储量</td>
<td>本项目油品存储量未超过其临界量。</td>
<td>不设置</td>
</tr>
</tbody>
</table>
超过临界量的建设项目

| 生态 | 取水口下游500米范围内有重要水生生物的自然产卵场、索饵场、越冬场和洄游通道的新增河道取水的污染类建设项目 | 本项目厂外接入水源，管径为DN200，站内形成供水系统，不设取水口。 | 不设置 |
| 海洋 | 直接向海排放污染物的海洋工程建设项目 | 本项目不属于海洋工程建设项目。 | 不设置 |

规划情况
无

规划环境影响评价情况
无

规划及规划环境影响评价符合性分析
无

其他符合性分析

1.1 项目与“三线一单”的符合性分析

本项目位于九龙坡区重点管控单元-莲花滩河吴家大桥（环境管控单元编码：ZH50010720001），符合性分析如下：

本项目与“三线一单”的符合性分析见表1-1。

表1-1 与“三线一单”符合性分析

<table>
<thead>
<tr>
<th>环境管控单元编码</th>
<th>环境管控单元名称</th>
<th>环境管控单元类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZH50010720001</td>
<td>九龙坡区重点管控单元-莲花滩河吴家大桥</td>
<td>九龙坡区重点管控单元</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>全市总体管控要求</th>
<th>控制要求</th>
<th>总体管控要求</th>
<th>项目实际情况</th>
<th>符合性</th>
</tr>
</thead>
<tbody>
<tr>
<td>环境管控要求</td>
<td>1,严格执行《产业结构调整指导目录》、《重庆市产业投资准入工作手册》、《重庆市工业项目环境准入规定》、《重庆市长江经济带发展负面清单指南实施细则（试行）》等文件要求，优化重点区域、流域、产业的空间布局。对不符合准入要求的项目，依法依规实施整改、退出等分类治理方案。</td>
<td>项目实际情况</td>
<td>符合</td>
<td></td>
</tr>
</tbody>
</table>

2
2. 禁止在长江干流及主要支流岸线 1 公里范围内新建重化工、纺织、造纸等存在污染风险的工业项目，禁止在长江干流 1 公里范围内新建、扩建化工园区和化工项目。5 公里范围内除经国家和市政府批准设立、仍在建设的工业园区外，不再新布局工业园（不包括现有工业园区拓展）。新建有污染物排放的工业项目应进入工业园区或工业集中区，不得在工业园区（集聚区）以外区域实施单纯增加产能的技改（扩建）项目。
3. 在长江鱼嘴以上江段及其一级支流汇入口上游 20 公里、嘉陵江及其一级支流汇入口上游 20 公里、集中式饮用水水源取水口上游 20 公里范围内的沿岸地区（江河 50 年一遇洪水位向陆域一侧 1 公里范围内），禁止新建、扩建排放重点重金属（铬、镉、汞、砷、铅等五类重金属）、剧毒物质和持久性有机污染物的工业项目。
4. 严格执行相关行业企业布局选址要求，优化环境防护距离设置，按要求设置生态隔离带，防范工业园区（工业集聚区）涉生态环境“邻避”问题，将环境防护距离优化控制在园区边界或用地红线以内。
5. 加快布局分散的企业向园区集中，鼓励现有工业项目、化工项目分别搬入工业集聚区、化工产业集聚区。
6. 优化城镇功能布局，开发活动限制在资源环境承载能力之内。科学确定城镇开发强度，提高城镇土地利用效率、建成区人口密度，划定城镇开发边界，从严供给城市建设用地，推动城镇化发展由外延扩张式向内涵提升式转变。精心维护自然山水和城乡人居环境，凸显历史文化底蕴，充分塑造和着力体现重庆的山水自然人文特色。

污染物排放管控
1. 未达到国家环境质量标准的重点区域、流域的有关地方人民政府，应制定限期达标规划，并采取措施按期达标。
2. 巩固“十一小”（不符合国家产业政策的小型造纸、制革、印染、染料、炼焦、炼硫、炼砷、炼油、电镀、农药、涉磷生产和使用等企业）取缔成果，防止死灰复燃。巩固“十一大”（造纸、焦化、氮肥、有色金属、印染、农副产品及食品加工、原料药制造(生化制药)、制革、农药、电镀以及涉磷产品等）企业污染整治成果。

九龙坡区 NO₂、PM₂.₅、SO₂、PM₁₀、O₃、CO 六项指标均达标，本项目位于重庆市高新区走马镇大石村，为三级加油站项目，加油采用自封式税控加油机，减少源头控制；卸油过程中
3. 主城区及江津区、合川区、璧山区、铜梁区二氧化硫、氮氧化物、颗粒物、挥发性有机物严格执行大气污染物特别排放限值，并逐步将执行范围扩大到重点控制区重点行业。
4. 新建、改建、扩建涉 VOCs 排放的项目，加强源头控制，使用低（无）VOCs 含量的原辅料，加强废气收集，安装高效治理设施。有条件的工业集聚区建设集中喷涂中心，配备高效治污设施，替代企业独立喷涂工序。
5. 集中治理工业集聚区水污染，新建、升级工业集聚区应同步规划建设和完成水集中处理设施并安装自动在线监控装置。组织评估依托城镇生活污水处理设施处理园区工业废水对出水的影响，导致出水不能稳定达标的，要限期退出城镇污水处理设施并另行专门处理。

| 环境风险防控 | 1. 健全风险防范体系，制定环境风险防范协调联动工作机制。开展涉及化工生产的工业园区突发环境事件风险评估。长江三峡库区干流流域、城市集中式饮用水源、涉及化工生产的化工园区等按要求开展突发环境事件风险评估。
2. 禁止建设存在重大环境安全隐患的工业项目。严禁工艺技术落后、环境风险高的化工企业向我市转移。 |
| 资源开发利用效率 | 1. 加强资源节约集约利用。实行能源、水资源、建设用地总量和强度双控行动，推进节能、节水、节地、节材等节约自然资源行动，从源头减少污染物排放。
2. 在禁燃区内，禁止销售、燃用高污染燃料，禁止新建、改建、扩建任何燃油高污染燃料的项目和设备。已建成使用高污染燃料的各类设备应当拆除或者改用管道天然气、页岩气、液化石油气、电或者其他清洁能源；在不具备使用清洁能源条件的区域，可使用配套专用锅炉和除尘装置的生物质成型燃料。
3. 电力、钢铁、纺织、造纸、石油石化、化工、食品发酵等高耗水行业达到先进定额标准。
4. 重点控制区域新建高耗能项目单位产品（产值）能耗要达到国际先进水平。5. 水利水电工程应保证合理的生态流量，具备条件的应实施生态流量监测监控。 |
<p>| 生态保护红线 | 九龙坡生态分区管控要求：(1) 法定禁止开发区，应该严格按照相关法律法规要求进行管理，不得轻易侵占该部分空间进行违法开 |
| 区域总体管控要求 | 发建设，历史遗留问题应该逐步清退，修复相关生态功能；②位于红线部分的“功能评价区”，应当优先参照生态红线管理办法，生态保护红线原则上按禁止开发区的要求进行管理，严禁不符合主体功能定位的各类开发活动，严禁任意改变用途。对国家重大战略资源勘查，在不影响主体功能定位的前提下，经国务院有关部门批准后予以安排。禁止与其生态功能不一致的开发活动；③位于一般生态空间的“功能评价区”，应当按照一般生态空间的限制性开发管理要求，严格控制建设活动范围和强度，该区域的用地属性的转变要进行资源承裁力分析，保证其结构和主要功能不受破坏。 | 生态保护红线以内。 | |
| 环境质量底线 | 大气环境：近期（2020年）、中期（2025年）、远期（2035年）三个发展阶段颗粒物（PM2.5）年均浓度下降或达标为核心，划定大气环境质量底线，全面改善环境空气质量。 | 本项目不涉及 | 符合 |
| | 水环境：2013-2017年期间，长江和尚山断面水质均达到III类及其以上。2017年，根据重庆市生态环境监测中心每月对和尚山断面和汤家沱断面进行的检测结果表明，达标率100%。2017年7月对和尚山断面和汤家沱断面水质进行了一次109项水质全分析，检测结果表明，饮用水源地的29个基本项目均达标，特定项目80项测值均低于集中式生活饮用水源地表水水质标准限值。 | 本项目地面冲洗废水和初期雨水经截留设施收集后，进入初期雨水收集池再排入现有污水处理站处理，达标后排入市政污水管网，项目所在地污水管网完善，不直接向周边地表水体排放废水，对水环境影响较小。 | 符合 |
| 资源利用上线及自然资源开发 | ①能源资源管控要求：禁止燃用煤炭及其制品、石油焦、油页岩、原油、重油、渣油、煤焦油、非专用锅炉或未配置高效除尘设施的专用锅炉燃用的生物质成型燃料，禁止燃用树木、木材、板材、秸秆、锯末、稻壳、蔗及其他任何未经加工成形的个各类生物质（生物质气化除外），禁止燃用橡胶等各种可燃废物，禁止燃用国家和重庆市规定的其他高污染燃料。②水资源管控要求：九龙坡区水资源承载状况为不超载，水资源开发利用效率为达标，根据水资源利用上线管控分区标准，九龙坡区水资源承载状况为临界超载，属水资源重点管控区，水资源开发利用效率属水资源一般管控区，故将全区纳入水资源重点管控。 | 本项目不属于能源资源管控项目。不涉及岸线资源、自然资源的开发。 | 符合 |</p>
<table>
<thead>
<tr>
<th>点管控区。③土地资源管控要求：1.对开发建筑过程中剥离的表土，应当单独收集和存放，符合条件的应当优先用于土地复垦、土壤改良、造地和绿化等。禁止将重金属或者其他有毒有害物质含量超标的工业固体废物、生活垃圾或者污染土壤用于土地复垦。2.加强建设用地规划引领管控。3.促进建设用地立体综合开发。4.实施城镇存量土地盘活利用。5.提高农村建设用地利用效率。</th>
</tr>
</thead>
<tbody>
<tr>
<td>受体敏感区管控要求：空间布局：1.禁止投资大气污染严重的燃煤电厂（含热电）、冶炼、水泥项目。2.基本淘汰35吨/小时以下燃煤锅炉，鼓励65蒸吨/小时及以上燃煤锅炉实施节能和超低排放改造。3.禁止在居民住宅楼、未配套设立专用烟道的商住综合楼、商住综合楼内与居住层相邻的商业楼层，新建、改建、扩建产生油烟、异味、废气的餐饮服务、加工服务、服装干洗、机动车维修等项目。污染物排放管控：1.推广使用达到国六排放标准的燃气车辆。完成储油库和年销售汽油5000吨以上加油站在线监控设施建设。2.全面执行施工工地扬尘控制规范，落实十项强制规定。严格落实“定车辆、定线路、定渣场”。控制建筑渣土消纳场扬尘。3.开展餐饮油烟深度治理，完成所有公共机构和火锅等餐饮业油烟深度治理，安装高效油烟净化装置，鼓励低于国家排放标准50%排放。不得在城市建成区、人口集中区域露天焚烧树枝树叶、枯草、垃圾、电子废物、沥青、橡胶、塑料、皮革以及其他产生有毒有害烟尘和恶臭气体的物质，不得在禁止的区域内露天烧烤食品。</td>
</tr>
<tr>
<td>本项目不涉及</td>
</tr>
<tr>
<td>单元管控</td>
</tr>
<tr>
<td>管控要求</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>求</td>
</tr>
<tr>
<td>污染物排放管控</td>
</tr>
<tr>
<td>环境风险防控</td>
</tr>
<tr>
<td>资源利用效率</td>
</tr>
</tbody>
</table>

通过上表分析，本项目符合“三线一单”的相关要求。

1.2 产业政策符合性分析

因此，本项目建设符合国家和重庆市的产业政策要求。
1.3 与《四川省、重庆市长江经济带发展负面清单实施细则（试行，2022年版）》（川长江办[2022]17号）的符合性分析

根据与《四川省、重庆市长江经济带发展负面清单实施细则（试行，2022年版）》（川长江办[2022]17号）中相关内容，分析拟建项目与其符合性，见表1-2。

表1-2 与川长江办[2022]17号符合性分析

<table>
<thead>
<tr>
<th>序号</th>
<th>负面清单</th>
<th>本项目情况</th>
<th>符合性分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>禁止新建、改建和扩建不符合全国港口布局规划，以及《四川省内河永发展规划》《泸州—宜宾—乐山港口群布局规划》《重庆港总体规划（2035年）》等省级港口布局规划及市级港口总体规划的码头项目。</td>
<td>本项目为三级加油站项目，不属于码头项目。</td>
<td>符合</td>
</tr>
<tr>
<td>2</td>
<td>禁止新建、改建和扩建不符合《长江干线过江通道布局规划（2020-2035年）》的过江通道项目（含桥梁、隧道），国家发展改革委同意过江通道线位调整的除外。</td>
<td>本项目为三级加油站项目，不属于过长江通道项目。</td>
<td>符合</td>
</tr>
<tr>
<td>3</td>
<td>禁止在自然保护区核心区、缓冲区的岸线和河段范围内投资建设旅游和生产经营项目。自然保护区的内部未分区的，依照核心区和缓冲区的规定管控。</td>
<td>本项目位于重庆市高新区走马镇大石村，不涉及自然保护区。</td>
<td>符合</td>
</tr>
<tr>
<td>4</td>
<td>禁止违反风景名胜区规划，在风景名胜区内设立各类开发区。禁止在风景名胜区核心景区的岸线和河段范围内建设宾馆、招待所、培训中心、疗养院以及与风景名胜资源保护无关的项目。</td>
<td>本项目位于重庆市高新区走马镇大石村，不涉及风景名胜区。</td>
<td>符合</td>
</tr>
<tr>
<td>5</td>
<td>禁止在饮用水水源准保护区的岸线和河段范围内新增、扩建对水体污染严重的建设项目，禁止改扩建增加排污量的建设项目。</td>
<td>本项目不涉及饮用水水源准保护区。</td>
<td>符合</td>
</tr>
<tr>
<td>6</td>
<td>饮用水水源二级保护区的岸线和河段范围内，除遵守准保护区规定外，禁止新建、改建、扩建排污污染物的建设项目；禁止从事对水体有污染的水产养殖等活动。</td>
<td>本项目不涉及饮用水水源二级保护区。</td>
<td>符合</td>
</tr>
<tr>
<td>7</td>
<td>饮用水水源一级保护区的岸线和河段范围内，除遵守二级保护区规定外，禁止新建、改建、扩建与供水设施和保护水源无关的项目，以及网箱养殖、畜禽养殖、旅游等可能污染饮用水体的投资建设项目。</td>
<td>本项目不涉及饮用水水源一级保护区。</td>
<td>符合</td>
</tr>
<tr>
<td>8</td>
<td>禁止在水产种质资源保护区岸线和河段范围内新建围湖造田、围湖造地或挖沙采石等投资建设项目。</td>
<td>本项目不涉及水产种质资源保护区。</td>
<td>符合</td>
</tr>
<tr>
<td>9</td>
<td>禁止在国家湿地公园的岸线和河段范围内开</td>
<td>本项目不涉及国家湿地公园。</td>
<td>符合</td>
</tr>
<tr>
<td></td>
<td>禁止在长江流域河道内违法利用、占用河道岸线。禁止在《长江岸线保护和开发利用总体规划》划定的岸线保护区和岸线保留区内投资建设除事关公共安全及公众利益的防洪护岸、河道治理、供水、生态环境保护、航道整治、国家重要基础设施以外的项目。</td>
<td>本项目不涉及左列岸线保护区和岸线保留区。</td>
<td>符合</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>禁止在长江流域河湖、湖泊新设、改设或者扩大排污口，经有管辖权的生态环境主管部门或者长江流域生态环境监督管理机构同意的除外。</td>
<td>本项目废水间接排放，不新增排污口。</td>
<td>符合</td>
</tr>
<tr>
<td>11</td>
<td>本项目不涉及水生生物保护区，也不涉及捕捞。</td>
<td>本项目不涉及水生生物保护区，也不涉及捕捞。</td>
<td>符合</td>
</tr>
<tr>
<td>12</td>
<td>本项目为三级加油站项目，不属于左列项目。</td>
<td>本项目为三级加油站项目，不属于化工项目。</td>
<td>符合</td>
</tr>
<tr>
<td>13</td>
<td>本项目为三级加油站项目，不涉及左列禁止类项目。</td>
<td>本项目为三级加油站项目，不涉及左列禁止类项目。</td>
<td>符合</td>
</tr>
<tr>
<td>14</td>
<td>本项目为三级加油站项目，不属于左列生态保护红线等区域。</td>
<td>本项目为三级加油站项目，不涉及左列食用油、煤制烯烃、煤制芳烃项目。</td>
<td>符合</td>
</tr>
<tr>
<td>15</td>
<td>本项目为三级加油站项目，不属于左列高污染项目。</td>
<td>本项目为三级加油站项目，不属于左列高污染项目。</td>
<td>符合</td>
</tr>
<tr>
<td>16</td>
<td>本项目为三级加油站项目，不属于左列项目。</td>
<td>本项目为三级加油站项目，不属于左列项目。</td>
<td>符合</td>
</tr>
<tr>
<td>17</td>
<td>本项目为三级加油站项目，不属于左列项目。</td>
<td>本项目为三级加油站项目，不属于左列项目。</td>
<td>符合</td>
</tr>
<tr>
<td>18</td>
<td>本项目为三级加油站项目，不属于左列项目。</td>
<td>本项目为三级加油站项目，不属于左列项目。</td>
<td>符合</td>
</tr>
</tbody>
</table>
禁止新建、扩建法律法规和相关政策明令禁止的落后产能项目。对《产业结构调整指导目录》中淘汰类项目，禁止投资；限制类的扩建项目，禁止投资，对属于限制类的现有生产能力，允许企业在一定期限内采取措施改造升级。本项目不属于落后产能项目，也不属于《目录》中淘汰类、限制类项目。符合

禁止新建、扩建不符合国家产能置换要求的严重过剩产能行业的项目。对不符合国家产能置换要求的严重过剩产能行业，不得以其他任何名义、任何方式备案新增产能项目。本项目不属于严重过剩产能行业项目。符合

禁止建设以下燃油汽车投资项目（不在中国境内销售产品的投资项目除外）：
（一）新建独立燃油汽车企业；
（二）现有汽车企业跨乘用车、商用车类别建设燃油汽车生产能力；
（三）外省现有燃油汽车企业整体搬迁至本省（列入国家级区域发展规划或不改变企业股权结构的项目除外）；
（四）对行业主管部门特别公示的燃油汽车企业进行投资（企业原有股东投资或将该企业转为非独立法人的投资项目除外）。
本项目不涉及燃油汽车行业项目。符合

禁止新建、扩建不符合要求的高耗能、高排放、低水平项目。本项目不属于高耗能、高排放、低水平项目。符合

注：1、长江干支流、重要湖泊岸线一公里范围指长江干支流、重要湖泊岸线边界（即水利部门河湖管理范围边界）向陆域纵深一公里。本实施细则所称长江干流，是指直接或间接流入长江干流的河流，支流可分为一级支流、二级支流等。
2、合规园区指已列入《中国开发区审核公告目录》或由省级人民政府批准设立、审核认定的开发区或其他园区。新设立或认定园区须明确园区面积、四至范围、主导产业并经省级政府同意。
3、高污染项目严格按照《环境保护综合名录（2021年版）》“高污染”产品目录执行。
4、国家重要基础设施为党中央、国务院、中央军委及其有关部门印发或同意的文件、规划中明确的项目。
5、重要湖泊是指设立了省级湖长的湖泊。

根据上表分析可知，本项目符合“川长江办〔2022〕17号”文件的有关要求。

1.4 与《长江经济带发展负面清单指南》（试行，2022年版）符合性分析

本项目与《长江经济带发展负面清单指南（试行，2022年版）》的通知（长江办〔2022〕7号）符合性分析详见下表。
表1-3 与《长江经济带发展负面清单指南》（试行，2022年版）符合性分析

<table>
<thead>
<tr>
<th>序号</th>
<th>文件要求</th>
<th>本项目情况</th>
<th>符合性分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>禁止建设不符合全国和省级港口布局规划以及港口总体规划的码头项目，禁止建设不符合《长江干线过江通道布局规划》的过长江通道项目。</td>
<td>本项目为三级加油站项目，不属于所列港口，码头及过长江通道项目。</td>
<td>符合</td>
</tr>
<tr>
<td>2</td>
<td>禁止在自然保护区核心区、缓冲区的岸线和河段范围内投资建设旅游和生产经营项目。禁止在风景名胜区核心景区的岸线和河段范围内投资建设与风景名胜资源保护无关的项目。</td>
<td>本项目位于重庆市高新区走马镇大石村，不涉及自然保护区核心区、缓冲区及风景名胜区核心景区的岸线和河段范围。</td>
<td>符合</td>
</tr>
<tr>
<td>3</td>
<td>禁止在饮用水水源一级保护区的岸线和河段范围内新建、改建、扩建与供水设施和保护水源无关的项目，以及网箱养殖、畜禽养殖、旅游等可能污染饮用水体的投资建设项目。禁止在饮用水水源二级保护区的岸线和河段范围内新建、扩建、扩建排放污染物的投资建设项目。</td>
<td>本项目位于重庆市高新区走马镇大石村，不涉及饮用水水源保护区。</td>
<td>符合</td>
</tr>
<tr>
<td>4</td>
<td>禁止在水产种质资源保护区的岸线和河段范围内建设除事关公共安全及公众利益的防洪护岸、河道治理、供水、生态环保、航道整治、国家重要基础设施以外的项目。禁止在耗尽重要江河湖泊水功能区范围内新建、扩建、扩建排放污染物的投资建设项目。</td>
<td>本项目位于重庆市高新区走马镇大石村，不涉及水产种质资源保护区和国家湿地公园。</td>
<td>符合</td>
</tr>
<tr>
<td>5</td>
<td>禁止违法利用、占用长江流域河湖岸线。禁止在《长江岸线保护和开发利用总体规划》划定的岸线保护区和保留区内投资建设除事关公共安全及公众利益的防洪护岸、河道治理、供水、生态环保、航道整治、国家重要基础设施以外的项目。禁止在《全国重要江河湖泊水功能区划》划定的河段及湖泊保护区、保留区内投资建设不利于水资源及自然生态保护的项目。</td>
<td>本项目位于重庆市高新区走马镇大石村，不占用所列河湖岸线。</td>
<td>符合</td>
</tr>
<tr>
<td>6</td>
<td>禁止未经许可在长江干支流及湖泊新设、改设或扩大排污口。</td>
<td>本项目废水间接排放，不新设排污口。</td>
<td>符合</td>
</tr>
<tr>
<td>7</td>
<td>禁止在“一江一湖两山七河”和332个水生生物保护区开展生产性捕捞。</td>
<td>本项目不涉及</td>
<td>符合</td>
</tr>
<tr>
<td>8</td>
<td>禁止在长江干支流、重要湖泊岸线一公里范围内新建、扩建化工园区和化工项目。禁止在长江干流岸线一公里范围内和重要支流岸线一公里范围内新建、扩建、改建尾矿库、冶炼渣库和磷石膏库，以提升安全、环境保护水平为目的的改建除外。</td>
<td>本项目位于重庆市高新区走马镇大石村，为三级加油站项目，不涉及所列禁止建设项目。</td>
<td>符合</td>
</tr>
<tr>
<td>9</td>
<td>禁止在合规园区外新建、扩建钢铁、石灰等高污染项目。</td>
<td>本项目为三级加油站项目</td>
<td>符合</td>
</tr>
</tbody>
</table>
化、化工、焦化、建材、有色、制浆造纸等高污染项目。

10 禁止新建、扩建不符合国家石化、现代煤化工等产业布局规划的项目。

禁止新建、扩建不符合国家石化、现代煤化工等产业布局规划的项目。本项目为三级加油站项目，不属于左列项目。符合

11 禁止新建、扩建法律法规和相关政策明令禁止的落后产能项目。禁止新建、扩建不符合要求的高耗能高排放项目。

本项目不属于落后产能、严重产能过剩产能行业。符合

12 法律法规及相关政策文件有更加严格规定的从其规定。

本项目不属于落后产能、严重产能过剩产能行业，也不属于高耗能高排放项目。符合

综上，本项目符合《长江经济带发展负面清单指南（试行，2022年版）》的通知（长江办〔2022〕7号）的要求。

1.5 与《重庆市发展和改革委员会关于印发重庆市产业投资准入工作手册的通知》（渝发改投资〔2022〕1436号）的符合性分析

评价根据《重庆市发展和改革委员会关于印发重庆市产业投资准入工作手册的通知》（渝发改投资〔2022〕1436号）中的相关规定及要求，对本项目进行符合性分析，详见表1-4。

<table>
<thead>
<tr>
<th>序号</th>
<th>文件要求</th>
<th>本项目情况</th>
<th>符合性分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>一、全市范围内不予准入的产业</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>国家产业结构调整指导目录中的淘汰类项目。</td>
<td>本项目属于产业结构调整指导目录中允许类项目。</td>
<td>符合</td>
</tr>
<tr>
<td>2</td>
<td>天然林商业性采伐。</td>
<td>本项目不涉及采伐。</td>
<td>符合</td>
</tr>
<tr>
<td>3</td>
<td>法律法规和相关政策明令不予准入的其他项目。</td>
<td>本项目不属于不予准入项目。</td>
<td>符合</td>
</tr>
<tr>
<td>二、重点区域不予准入的产业</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>外环绕城高速公路以内长江、嘉陵江水域采砂。</td>
<td>本项目不涉及采砂。</td>
<td>符合</td>
</tr>
<tr>
<td>2</td>
<td>二十五度以上陡坡地开垦种植农作物。</td>
<td>本项目不涉及开垦种植农作物。</td>
<td>符合</td>
</tr>
<tr>
<td>3</td>
<td>在自然保护区核心区、缓冲区的岸线和河段范围内投资建设旅游和生产经营项目。</td>
<td>本项目不涉及自然保护区。</td>
<td>符合</td>
</tr>
<tr>
<td>4</td>
<td>饮用水水源一级保护区的岸线和河段范围内新建、改建、扩建与供水设施和保护水源无关的项目，以及网箱养殖、畜禽养殖、放养畜禽、旅游等可能污染饮用水水体的投建建设项目。在饮用水水源二级保护区的岸线和河段范围内新建、改建、扩建排放污染物的投建建设项目。</td>
<td>本项目不涉及饮用水源一级、二级保护区。</td>
<td>符合</td>
</tr>
<tr>
<td>5</td>
<td>长江干流沿岸线 3 公里范围内和重要支流河段 1 公里范围内新建、改建、扩建尾矿库、冶炼渣库和磷石膏库（以提升安全、生态环境保护水平为目的的改建除外）。</td>
<td>本项目位于重庆市高新区走马镇大石村，为三级加油站项目，不属于左列项目。</td>
<td>符合</td>
</tr>
<tr>
<td>6</td>
<td>在风景名胜区核心景区的岸线和河段范围内投资建设与风景名胜资源保护无关的项目。</td>
<td>本项目不涉及风景名胜区。</td>
<td>符合</td>
</tr>
<tr>
<td>7</td>
<td>在国家湿地公园的岸线和河段范围内挖沙、采矿，以及任何不符合主体功能定位的投资建设项目。</td>
<td>本项目不涉及国家湿地公园。</td>
<td>符合</td>
</tr>
<tr>
<td>8</td>
<td>在《长江岸线保护和开发利用总体规划》划定的岸线保护区和保留区内投资建设除事关公共安全及公众利益的防洪护岸、河道治理、供水、生态环境保护、航道整治、国家重要基础设施以外的项目。</td>
<td>本项目位于重庆市高新区走马镇大石村，不涉及《长江岸线保护和开发利用总体规划》划定的岸线保护区和保留区范围。</td>
<td>符合</td>
</tr>
<tr>
<td>9</td>
<td>在《全国重要江河湖泊水功能区划》划定的河段及湖泊保护区、保留区内投资建设不利于水资源及自然生态生态保护的项目。</td>
<td>本项目位于重庆市高新区走马镇大石村，不涉及《全国重要江河湖泊水功能区划》划定的河段及湖泊保护区、保留区。</td>
<td>符合</td>
</tr>
</tbody>
</table>

三、限制准入类

（一）全市范围内限制准入的产业

1	新建、扩建不符合国家产能置换要求的严重过剩产能行业的项目。新建、扩建不符合要求的高能耗高排放项目。	本项目为三级加油站项目，不属于严重过剩产能行业，也不属于高耗能高排放项目。	符合
2	新建、扩建不符合国家石化、现代煤化工等产业布局规划的项目。	本项目不属于左列项目。	符合
3	在合规园区外新建、扩建钢铁、石化、化工、焦化、建材、有色、制浆造纸等高污染项目。	不涉及	符合
4	《汽车产业投资管理规定》（国家发展和 改革委员会令第 22 号）明确禁止建设的汽车投资项目。	不涉及	符合

（二）重点区域范围内限制准入的产业
1.6 与《重庆市生态环境保护“十四五”规划（2021—2025 年）》（渝府发〔2022〕11 号）符合性分析

本项目与《重庆市生态环境保护“十四五”规划（2021—2025 年）》（渝府发〔2022〕11 号）符合性分析见表 1-5。

表1-5 与《重庆市生态环境保护“十四五”规划（2021—2025年）》符合性分析

<table>
<thead>
<tr>
<th>序号</th>
<th>基本要求</th>
<th>本项目情况</th>
<th>符合性</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>加强重点水环境综合治理。</td>
<td>本项目位于重庆市高新区走马镇大石村，周边污水管网完善，项目废水间接排放，经市政污水管网排入走马乐园污水处理厂处理达标后排入梁滩河。</td>
<td>符合</td>
</tr>
<tr>
<td>2</td>
<td>提升大气环境质量。</td>
<td>本项目为三级。</td>
<td>符合</td>
</tr>
</tbody>
</table>
以挥发性有机物治理和工业炉窑整治为重点深化工业废气污染控制。完成钢铁行业大气污染物超低排放改造。推进实施水泥行业产能置换或减量替代，推动工业炉窑深度治理和升级改造。垃圾焚烧发电厂氮氧化物深度治理。加大化工园区及制药、造纸、化工、燃煤锅炉等行业废气无组织排放监管。严格执行VOCs（挥发性有机物）含量限值标准，大力推进低（无）VOCs 原辅材料替代，将生产和使用高 VOCs 含量的产品的企业列入强制性清洁生产审核名单。以工业涂装、包装印刷、家具制造、电子、石化、化工、油品储运销等行业为重点，强化 VOCs 无组织排放管控。推动适时将挥发性有机物纳入环境保护税征收范围。

加油站，采用密闭卸油方式，加油采用自封式税控加油机，减少源头控制；卸油过程中挥发的油气经一次油气回收系统回收后处理；储油罐顶部设置通气立管 2 根。

加油站采用地上式橇装加油装置，内含 2 个双层钢制油罐储油，储油罐设置紧急泄压装置、防溢流装置、自动断油保护，加油机底部防渗，站内地面硬化、一般防渗，储油罐重点防渗，土壤和地下水污染风险小。

由上表分析可知，项目符合重庆市生态环境保护“十四五”规划（2021-2025年）（渝府发〔2022〕11号）相关要求。

1.7 与《挥发性有机物（VOCs）污染防治技术政策》符合性分析
表 1-6 与《挥发性有机物（VOCs）污染防治技术政策》的符合性分析

<table>
<thead>
<tr>
<th>项目</th>
<th>技术政策中要求</th>
<th>本项目情况</th>
<th>符合性分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>源头和过程控制</td>
<td>(八) 在油类(燃油、溶剂)的储存、运输和销售过程中的VOCs污染防治技术措施包括:</td>
<td>本项目为三级加油站项目，采用自流卸油和密闭卸油的方式，设置通气立管2根;油罐车装载过程中排放的VOCs密闭收集输送至油罐车回收设备，运回储油库进行油气回收处理。</td>
<td>符合</td>
</tr>
<tr>
<td></td>
<td>1.储油库、加油站和油罐车宜配套相应的油气收集系统，储油库、加油站宜配备相应的油气回收系统;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.油类(燃油、溶剂等)储罐宜采用高效密封的内(外)浮顶罐，当采用固定顶罐时，通过密闭排气回收系统将VOCs气体输送至回收设备;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.油类(燃油、溶剂等)运载工具(汽车油罐车、铁路油槽车、油轮等)在装载过程中排放的VOCs密闭收集输送至回收设备，也可返回储罐或送入气体管。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>鼓励VOCs的回收利用，并优先鼓励在生产系统内回用;对于含低浓度VOCs的废气，有回收价值时可采用吸附技术、吸收技术对有机溶剂回收后达标排放;不宜回收时，可采用吸附浓缩燃烧技术、生物技术、吸收技术、等离子体技术或紫外光高级氧化技术等净化后达标排放</td>
<td>本项目卸油油气经一次油气回收系统回收至油罐车内，运回储油库进行油气回收处理。储油罐顶部设置通气立管2根。</td>
<td>符合</td>
</tr>
</tbody>
</table>

1.8 与《挥发性有机物无组织排放控制标准》符合性分析

表 1-7 与《挥发性有机物无组织排放控制标准》符合性分析表

<table>
<thead>
<tr>
<th>项目</th>
<th>技术政策中要求</th>
<th>本项目概况</th>
<th>符合性分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOCs物料储存无组织排放控制基本要求</td>
<td>VOCs物料应储存于密闭的容器、包装袋、储罐、储库、料仓中。盛装VOCs物料的容器或包装袋应存放于室内，或存放于设置有雨棚、遮阳和防渗设施的专用场地。盛装VOCs物料的容器或包装袋在非取用状态时应加盖、封口，保持密闭。VOCs物料储罐应密封良好，其中挥发性有机液体储罐应符合挥发性有机液体储罐规定。VOCs物料储罐、料仓应满足密闭空间的要求。</td>
<td>本项目柴油储存于双层钢制油罐内，符合挥发性有机液体储罐规定。</td>
<td>符合</td>
</tr>
<tr>
<td>VOCs物料转移和输送无组织排放控制要求</td>
<td>液态VOCs物料应采用密闭管道输送。采用非管道输送方式转移液态VOCs物料时，应采用密闭容器、罐车。挥发性有机液体应采用底部装载方式;若采用顶部浸没式装载，出口管口距离槽(罐)底部高度应小于200mm。装载物料真实蒸气压≥27.6kPa且单一装载设施的年装载量≥500m³，以及装载物料</td>
<td>本项目设置卸油油气回收系统，卸油为密闭卸油，并设置卸油防溢阀，卸油油气回收效率可达95%;储油罐设</td>
<td>符合</td>
</tr>
</tbody>
</table>
料真实蒸气压≥5.2kPa 但<27.6kPa 且单一装载设施的年装载量≥2500m³ 的，装载过程应符合下列规定之一：排放的废气应收集处理并满足相关行业排放标准的要求（无行业排放标准的应满足 GB 16297 的要求），或者处理效率不低于 90%；排放的废气连接至气相平衡系统。

由上表可知，项目符合《挥发性有机物无组织排放控制标准》（GB37822-2019）文件的相关要求。

1.9 与《加油站大气污染物排放标准》（GB20952-2020）符合性分析

本项目与《加油站大气污染物排放标准》（GB20952-2020）相关管控要求符合性分析详见下表。

表 1-8 与《GB 20952-2020》的符合性分析

<table>
<thead>
<tr>
<th>项目</th>
<th>油气排放控制要求</th>
<th>本项目情况</th>
<th>符合性分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>基本要求</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.加油站卸油、储油和加油时排放的油气，应采用以密闭收集为基础的油气回收方法进行控制。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.加油站应建立油气回收施工图纸、油气回收系统测试校核、系统参数设置等技术档案，制定加油站油气回收系统管理、操作规程，定期进行检查、维护、维修并记录留档。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.加油站应按照环境监测管理规定和技术规范的要求，设计、建设、维护采样口或采样测试平台。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.油气回收系统、油气处理装置、在线监测系统应采用标准化连接。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.在进行包括加油站油气回收排放控制在内的油气回收设计和施工时，应将在线监测系统、油气处理装置的设备管线预先埋设。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>卸油油气排放控制</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.应采用浸没式卸油方式，卸油管出油口距罐底高度应小于 200mm。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.卸油和油气回收接口应安装公称直径为 100mm 的截流阀（或密封式快速接头）和盖子，现有加油站已采取卸油油气排放控制措施但接口尺寸不符的可采用变径连接。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.连接软管应采用公称直径为 100mm 的密封式快速接头与卸油车连接。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.所有油气管线排放口应按 GB50156 的要求设置压力/真空阀，如设有阀门，阀门应保持常开状态；未安装压力/真空阀的汽油排放管应保持常闭状态。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.连接排气管的地下管线应坡向油罐，坡度不</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17
<table>
<thead>
<tr>
<th>储油油气回收控制</th>
<th>1. 所有影响储油油气回收密闭性的部件，包括油气回收系统密闭点位时，不应有油气回漏。 2. 储油油气回收系统密闭点位时，应采用红外摄像方式检测，不应有油气回漏。 3. 储油油气回收系统密闭点位时，应采用电子式液位计进行汽油密闭测量。 4. 储油油气回收系统密闭点位时，应采用符合 GB 50156 相关规定的溢油控制措施。</th>
<th>符合</th>
</tr>
</thead>
<tbody>
<tr>
<td>加油油气回收控制</td>
<td>1. 加油产生的油气回收管线应坡向油罐，坡度不应小于 1%。 2. 加油软管应配备拉断截止阀，加油时应防止溢油和滴油。 3. 当辖区内采用 ORVR 的轻型汽车达到汽车保有量的 20% 后，油气回收系统、在线监测系统应兼容 GB 18352.6 要求的轻型车 ORVR 系统。 4. 新建、改建、扩建的加油站在加油管线覆土、地面硬化施工之前，应向管线内注入 10 L 汽油并检测液阻。</td>
<td>符合</td>
</tr>
<tr>
<td>油气回收装置</td>
<td>1. 油气回收装置启动运行的压力感应值宜设在 +150Pa，停止运行的压力感应值宜设在 0—50Pa，或根据加油站情况自行调整。 2. 油气回收装置排气口距地平面高度不应小于 4 m，具体高度以及与周围建筑物的距离应根据环境影响评价文件确定，排气口应设阻火器。油气回收装置排油管处油罐的坡度不应小于 1%。 3. 油气回收装置在卸油期间应保持正常运行状态。</td>
<td>符合</td>
</tr>
</tbody>
</table>

根据上表分析，本项目满足《加油站大气污染物排放标准》（GB20952-2020）相关管控要求。
1.10 与《采用撬装式加油装置的汽车加油站技术规范》符合性分析

表 1-9 与《采用撬装式加油装置的汽车加油站技术规范》的符合性分析

<table>
<thead>
<tr>
<th>序号</th>
<th>技术规范中要求</th>
<th>本项目情况</th>
<th>符合性分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>拖装式加油装置油罐的总容积以及单罐最大容积应小于或等于 50m³。当地面防火油罐单罐容积大于 25m³ 时，罐内应设隔仓，隔仓的容积应小于或等于 25m³。</td>
<td>本项目油罐的总容积为 50m³，单罐最大容积为 25m³，罐内设隔仓。</td>
<td>符合</td>
</tr>
<tr>
<td>2</td>
<td>拖装式加油装置不得设在室内或其它封闭空间内。</td>
<td>本项目拖装式加油装置不在室内或其它封闭空间内。</td>
<td>符合</td>
</tr>
<tr>
<td>3</td>
<td>拖装式加油装置应采用卸油气气回收系统。</td>
<td>本项目设置 2 套卸油气气回收系统。</td>
<td>符合</td>
</tr>
<tr>
<td>4</td>
<td>当拖装式加油装置采用单壁地面防火油罐时，油罐上方应设防喷罩棚或采取隔热措施；当采用双壁油罐时，可不设防喷罩棚和不采取隔热措施。</td>
<td>本项目拖装式加油装置采用双层钢制油罐储油。</td>
<td>符合</td>
</tr>
<tr>
<td>5</td>
<td>拖装式加油装置的地面防火油罐通气管管口应高出地面 4m 及以上，并应高于罩棚的顶面 1.5m 及以上。通气管管口应安装呼吸阀和阻火器。</td>
<td>本项目通气管管口高出地面 4.8m，高出装置顶部 1.5m；每个通气管管口安装 1 个阻火呼吸阀，共 2 个。</td>
<td>符合</td>
</tr>
<tr>
<td>6</td>
<td>采用撬装式加油装置的加油站，应在站内设储油池；当橇装式加油装置采用双壁油罐时，可不设储油池。</td>
<td>本项目橇装式加油装置采用双层钢制油罐储油。</td>
<td>符合</td>
</tr>
<tr>
<td>7</td>
<td>灭火器的设置应符合下列规定： a) 每 2 台加油机应设置不少于 1 只 8kg 手提式干粉灭火器或 2 只 4kg 手提式干粉灭火器；加油机不足 2 台按 2 台计算； b) 站内应设 35kg 推车式干粉灭火器 1 只； c) 加油站应配置灭火毯 2 块，沙子 2m³； d) 其余建筑的灭火器材配置应符合现行国家标准《建筑灭火器配置设计规范》GBJ140 的规定。</td>
<td>站内设置 35kg 推车式干粉灭火器 1 台，5kg 手提式干粉灭火器 4 台，悬挂式干粉灭火器 1 台，防雷静电接地仪 1 套，站房设置 1 个消防器材箱（灭火器 2 个），2 张灭火毯，1 座消防池（沙子 2m³），2 张吸油毡布等。</td>
<td>符合</td>
</tr>
</tbody>
</table>

本项目橇装式加油装置与站外建（构筑）物的防火距离均满足《采用橇装式加油装置的汽车加油站技术规范》(SH/T 3134-2002) 中表 1 要求，详情见表 1-10。
表 1-10 撬装式加油装置与站外建、构筑物的防火距离

<table>
<thead>
<tr>
<th>名称</th>
<th>撬装式加油装置</th>
<th>符合性</th>
</tr>
</thead>
<tbody>
<tr>
<td>成渝环线高速</td>
<td>8</td>
<td>95</td>
</tr>
</tbody>
</table>

注：1、本项目油罐总容积 50m³；
2、本项目 50m 范围内无重要公共建筑物、明火或散发火花地点、民用建筑物、室外变配电站、铁路、架空通信线、架空电力线路。

根据上表可知，本项目撬装式加油装置满足《采用撬装式加油装置的汽车加油站技术规范》（SH/T 3134-2002）的相关规定。

1.11 总平面布置及安全符合性分析

本项目为三级加油站，呈不规则四边形，位于重庆市高新区走马镇大石村（走马垃圾二次转运站内）内，设置一座阻隔防爆撬装式加油设备。整个撬装加油装置设于地面上，设置 2 个双层钢制油罐（卧式储罐），单个容积为 25m³，配有 1 台双枪加油机、自动灭火器、紧急泄压装置、防溢流装置、自动断油保护、内部燃烧抑制装置。

从环保角度看，项目平面布置无外部制约因素，加油站总平面建、构筑物布置紧凑，卸油处、油罐区与垃圾转运车加油区等分区较为明确，加油区场地宽敞，有利于垃圾转运车进出。项目总平面布置满足《汽车加油加气站技术标准》（GB50156-2021）要求。项目选址合理性分析见下表。

表 1-11 与《汽车加油加气站技术标准》的符合性分析

<table>
<thead>
<tr>
<th>序号</th>
<th>油气排放控制要求</th>
<th>本项目情况</th>
<th>符合性分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>符合城乡规划。</td>
<td>本项目为走马垃圾二次转运站配套设施，用地属于高新区环卫用地，符合土地利用规划。</td>
<td>符合</td>
</tr>
<tr>
<td>2</td>
<td>符合环境保护要求。</td>
<td>本项目采取的各项环保措施符合现行的环境保护要求。</td>
<td>符合</td>
</tr>
<tr>
<td>3</td>
<td>应选在交通便利的地方。</td>
<td>项目东侧为成渝环线高速，南侧为银昆高速、渝昆高速和九永高速，交通便利。</td>
<td>符合</td>
</tr>
<tr>
<td>4</td>
<td>在城市中心区不应建一级汽车加油加气站、CNG 加气母站。</td>
<td>本项目为三级加油站。</td>
<td>符合</td>
</tr>
<tr>
<td>项目</td>
<td>内容</td>
<td>符合情况</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>城市建成区内的加油加气加氢站宜靠近城市道路，但不宜选在城市干道的交叉路口附近。</td>
<td>本项目不在城市干道交叉口。</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>加油站、各类合建站中的汽油、柴油工艺设备与站外建（构）筑物的安全距离，不应小于表4.0.4的规定。</td>
<td>加油站柴油工艺设备与站外建（构）筑物，满足安全距离要求。</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>架空电力线路不应跨越加油加气加氢站的作业区。架空通信线路不应跨越加气站、加氢合建站中加氢设施的作业区。</td>
<td>无架空电力线及通信线路跨越加油站。</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>槽车式加油装置应采用双壁钢制油罐，两层罐壁之间的空间应设漏油检测装置，并应保证内罐与外罐任何部位出现渗漏时均能被发现。</td>
<td>本项目槽车式加油装置采用双层钢制油罐储油，两层罐壁之间的空间设有检漏装置、玻璃视镜。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>槽车式加油装置的汽油罐内罐应安装防爆装置或材料。</td>
<td>本项目为柴油罐，安装有防爆装置和材料。</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>槽车式加油装置储罐的内罐设计压力不应小于0.8MPa，建造应符合《固定式压力容器安全技术监察规程》TSG 21、国家现行标准《压力容器》GB150.1~GB150.4、《卧式容器》NB/T47042和《石油化工钢制压力容器》SH/T 3074的有关规定。</td>
<td>本项目内罐设计压力不小于0.8MPa。</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>双壁钢制油罐的外罐，设计压力可为常压，建造应符合现行行业标准《钢制焊接常压容器》NB/T47003.1的有关规定。</td>
<td>本项目采用双层钢制油罐储油，设计压力为常压。</td>
<td></td>
</tr>
</tbody>
</table>
| 12 | 油罐附件设置应符合下列规定：
1. 油罐应设紧急泄压装置、防溢流阀、液位计，液位计应在油罐内的液位上升到油罐容量的90%时发出报警信号防溢流阀应在油罐内的液位上升到油罐容量的95%时自动停止 anv料进罐；
2. 油罐出油管道应设置高温自动断油保护阀；
3. 油罐进油口应设置在油罐上部，进油管的高点应高于油罐的最高液位，进油管应伸至罐内距罐底50mm~100mm处，进油管应采取防虹吸措施；
4. 卸油软管接头应采用自闭式快速接头；
5. 油罐出油管管口距罐底宜为 | 本项目设置紧急泄压装置、防溢流阀、高液位报警装置、紧急切断阀，设置拉断阀；进油管采取防虹吸措施，油罐出油管的高点高于油罐的最高液位；油罐通气管管口高于储罐周围地面4.8m，且高于装置顶部1.5m，2个管口分别1个设阻火呼吸阀。 |

21
0.15m，油罐出油管的高点应高于油罐的最高液位；
6、油罐的最高液位以下有连接法兰和快速接头的区域应设置收集漏油的容器；
7、油罐通气管管口应高于油罐周围地面4m，且应高于罐顶1.5m，管口应设阻火器和呼吸阀，呼吸阀的工作正压宜为2kPa~3kPa，工作负压宜为1.5kPa~2kPa。

| 13 | 油罐应设防晒罩棚或采取隔热措施。 | 本项目橇装式加油装置采用双层钢制油罐储油。 | 符合 |
| 14 | 加油机设置应符合下列规定：
1、加油机安装在箱体内时，箱体应采取良好的通风措施；
2、加油机上方应设自动灭火器，自动灭火器的启动温度不应高于95℃；
3、加油枪应采用自封式加油枪，汽油加油枪的流量不应大于50L/min；
4、加油软管上应设安全拉断阀。 | 本项目加油机安装在箱体内，通风良好，设置自动灭火器；加油枪采用自封式加油枪，设安全拉断阀。 | 符合 |
15	槽装式加油装置不得设在室内或有气相空间的封闭箱体内。	本项目位于走马垃圾二次转运站闲置露天区域。	符合
16	槽装式加油装置的汽油设备应采用卸油和加油油气回收系统。	本项目为柴油橇装式加油装置，设置2套卸油油气回收系统。	符合
17	槽装式加油装置四周应设防护围堰或漏油收集池，防护围堰内或漏油收集池的有效容量不应小于储罐总容量的50%防护围堰或漏油收集池应采用不燃烧实体材料建造，且不应渗漏。	本项目围堰有效容积为25m³。	符合
18	槽装式加油装置邻近行车道一侧应设防撞设施。	本项目邻近行车道一侧设有防撞设施。	符合

根据上表可知，本项目选址符合《汽车加油加气加氢站技术标准》（GB50156-2021）的相关规定。

本项目橇装加油装置使用双层钢制卧式油罐，周边建（构）筑物与本项目的安全距离不适用于《汽车加油加气加氢站技术标准》（GB50156-2021）中表4.0.4限值要求。项目站内设备设施防火间距见表1-12。
表 1-12 加油站站内设施的防火间距（m）

<table>
<thead>
<tr>
<th>设施名称</th>
<th>柴油罐</th>
<th>柴油通气管口</th>
<th>加油机</th>
<th>油品卸车点</th>
<th>符合性</th>
</tr>
</thead>
<tbody>
<tr>
<td>柴油罐</td>
<td>0.5/0.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>符合</td>
</tr>
<tr>
<td>通气管口</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2/3</td>
</tr>
<tr>
<td>油品卸车点</td>
<td>—</td>
<td>2/3</td>
<td>—</td>
<td>—</td>
<td>符合</td>
</tr>
<tr>
<td>站房</td>
<td>3/9.2</td>
<td>3.5/8</td>
<td>4/8.2</td>
<td>5/6.9</td>
<td>符合</td>
</tr>
<tr>
<td>站区围墙</td>
<td>2/34.2</td>
<td>2/37.9</td>
<td>—</td>
<td>—</td>
<td>符合</td>
</tr>
</tbody>
</table>

注：“/”前面为标准要求距离，“/”后面为设计总图距离。

根据上表可知，本项目站内设施防火间距满足《汽车加油加气加氢站技术标准》（GB50156-2021）表 5.0.13-1 加油站、LPG 加气站、加油与LPG 加气合建站内部设施的防火间距（m）的相关规定。
二、建设项目工程分析

<table>
<thead>
<tr>
<th>建设内容</th>
<th>2.1 项目由来</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>重庆市固体废弃物运输有限公司西部分公司走马垃圾二次转运站项目位于重庆市高新区走马镇大石村，配套服务于百果园垃圾焚烧厂和洛碛餐厨垃圾处理厂等，该项目为大型垃圾二次转运站，生活垃圾转运 3000t/d，有机垃圾转运规模为 1000t/d（其中餐厨垃圾转运 500t/d，果蔬垃圾 300t/d，厨余垃圾有机物 200t/d），厨余垃圾分选 500t/d（分选后 200t/d 的纳入有机垃圾转运系统，270t/d 纳入生活垃圾转运系统），处理大件垃圾为 50t/d（处理后纳入生活垃圾转运系统）。</td>
</tr>
<tr>
<td></td>
<td>2015 年 5 月，重庆浩力环境影响评价有限公司编制完成了《走马垃圾二次转运站项目环境影响报告表》，2015 年 5 月 26 日，重庆市九龙坡区生态环境局（原重庆市九龙坡区环境保护局）以“渝（九）环准[2015]090 号”对该项目进行了批复。</td>
</tr>
<tr>
<td></td>
<td>2020 年，由于垃圾站处理规模发生变化，重庆市环卫集团有限公司委托重庆浩力环境影响评价有限公司 2020 年 4 月对走马垃圾二次转运站项目进行了重新报批，并获得重庆市高新区生态环境局出具的环境影响评价文件批准书“渝（高新）环准[2020]008 号”。</td>
</tr>
<tr>
<td></td>
<td>2021 年 2 月，重庆市环卫集团有限公司委托重庆浩力环境影响评价有限公司编制了《走马垃圾二次转运站项目重大变动界定报告》，并界定为非重大变更。</td>
</tr>
<tr>
<td></td>
<td>该项目于 2021 年 5 月投产试运行，重庆市环卫集团有限公司将该项目日常经营管理工作全部交由重庆市固体废弃物运输有限公司西部分公司负责，重庆市固体废弃物运输有限公司西部分公司为重庆市环卫集团有限公司的全资子公司。</td>
</tr>
<tr>
<td></td>
<td>2022 年 4 月，重庆市固体废弃物运输有限公司西部分公司委托重庆吉麟科技发展有限公司编制完成了《重庆市固体废弃物运输有限公司西部分公司走马垃圾二次转运站项目竣工环境保护验收监测报告表》，并取得专家组意见。</td>
</tr>
</tbody>
</table>
为满足走马垃圾二次转运站内部车辆加柴油的需求，重庆市固体废弃物运输有限公司西部分公司拟投资 70 万元，在走马垃圾二次转运站内，建设“重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目”。项目运行后，仅供走马垃圾二次转运站内部车辆加油，不对外销售。

根据《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》、《建设项目环境影响评价分类管理名录》（2021 年版）等有关规定要求，本项目为城市建成区新建加油站，属于“五十、社会事业与服务业”类别中“119、加油、加气站”中的“城市建成区新建、扩建加油站；涉及环境敏感区的”，属于编制报告表的类别，故本项目应编制环境影响报告表。为此，项目建设单位特委托本公司开展环境影响评价工作。接受委托之后，我单位技术人员通过现场勘查并查阅相关资料，编制了《重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目环境影响报告表》。

2.2 项目概况

2.2.1 基本情况

项目名称：重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目；

建设单位：重庆市固体废弃物运输有限公司西部分公司；

项目性质：扩建；

建设地点：重庆市高新区走马镇大石村（走马垃圾二次转运站内）；

项目投资：建设总投资70万元，其中环保投资5万元；

建筑面积：120m²

原料供应来源：本项目主要供应走马垃圾二次转运站内部车辆所需的0#柴油，不对外销售，预计加油规模为0#柴油3274t/a。柴油运输由石油公司从油库用油罐车配送。

2.2.2 建设规模及等级

（1）撬装加油站等级

本项目采用双层钢制油罐储油，包括 2 个 25m³ 的 0#柴油罐，油罐总容积 V=50m³，折合汽油容积 25m³（柴油容积折半），根据《汽车加油加气加氢站技术标准》（GB50156-2021）表 3.0.9 对加油站的等级划分：
表 2-1 加油站的等级划分

<table>
<thead>
<tr>
<th>加油站等级</th>
<th>总容积 V</th>
<th>单罐容积</th>
</tr>
</thead>
<tbody>
<tr>
<td>一级</td>
<td>150<V≤210</td>
<td>≤50</td>
</tr>
<tr>
<td>二级</td>
<td>90<V≤150</td>
<td>≤50</td>
</tr>
<tr>
<td>三级</td>
<td>V≤90</td>
<td>汽油罐≤30，柴油罐≤50</td>
</tr>
</tbody>
</table>

根据上表划分依据可知，本项目属三级加油站建设项目。

（2）燃油经营设计规模

本项目主要供应走马垃圾二次转运站内部车辆所需的 0#柴油成品油，建设单位根据转运站内部车辆数量及车辆使用时间，确定撬装加油站年供应 0#柴油量为 3274t/a。

（3）服务范围及管理

服务范围：走马垃圾二次转运站

供油管理：项目设计专用加油卡进行加油，加油时与车牌号对应，并有统一的管理人员核对，加油系统与管理人员进行联网，车辆加油完成后加油信息会自动传输至管理人员。本项目服务车辆统一管理单位为中国石油化工股份有限公司重庆分公司，责任主体为中国石油化工股份有限公司重庆分公司。

2.2.3 项目建设内容及规模

本项目用地面积 120m²，主要建设工程为一座撬装式加油装置及配套设施。项目主要建设内容详见表 2-2 所示。

表 2-2 项目组成一览表

<table>
<thead>
<tr>
<th>项目组成</th>
<th>现有工程建设内容</th>
<th>扩建工程建设内容</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>压缩转运综合处理车间 (生活垃圾转运和分选垃圾卸料间)</td>
<td>共 2F(局部 3F)，钢筋混凝土框排架结构建筑，占地面积为 4505.8m²，建筑面积为 9735.7m²。其中：第 1F 包括压缩区、清淤间、机修车间和液压泵站等；第 2F 包括卸料大厅、除尘室、除臭设备间、生活垃圾卸料间，分选垃圾卸料间等，局部 3F 为参观走廊、生产管理室和控制室。</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>压缩转运综合处理车间 (厨余垃圾)</td>
<td>共 2F(局部 3F)，钢筋混凝土框排架结构建筑，占地面积为 3600 m²，建筑面积为 7800m²。其中：</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>分选和餐厨果蔬垃圾转运</td>
<td>第 1F 包括备品备件库、机修间、工具间、变配电室、机修车间、通风除臭设备间，有害垃圾预留暂存用地等；第 2F 包括餐厨果蔬垃圾卸料大厅、分选车间、除臭设备间、机修间和备品备件库等；局部 3F 为参观走廊、生产管理室和控制室。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大件破碎车间</td>
<td>1F，建筑面积为 872.6m²，布置有大件破碎车间，配电室及生产管理室，并布置有木质垃圾堆放区、金属垃圾堆放及金属回收储存区。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>加油区</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>一座 50 m³单油品双舱阻隔防爆橇装式燃油加油装置。整个橇装加油装置设于地面上，设置 2 个双层钢制油罐（卧式储罐），单个容量为 25m³，配有 1 台双枪加油机。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>综合楼</td>
<td>4F，占地面积为 920.5m²，建筑面积为 3709.0m²，包括中央控制室、厨房餐厅、办公室、接待室、会议室、倒班休息室等，包括员工住宿洗浴等功能。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>受托现有综合楼。</td>
<td>依托</td>
<td></td>
<td></td>
</tr>
<tr>
<td>配套装置</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自动灭火器、紧急泄压装置、防溢流装置、自动断油保护、内部燃烧抑制装置、防雷措施。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>返场场地</td>
<td>场地中部、站房东侧设置返场场地。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>不涉及</td>
<td>无变化</td>
<td></td>
<td></td>
</tr>
<tr>
<td>餐厨转运车</td>
<td>位于场地东侧，设置 13 个转运车位，预留多个容器转运面积空地。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>不涉及</td>
<td>无变化</td>
<td></td>
<td></td>
</tr>
<tr>
<td>含油系统</td>
<td>配置相关输送车辆，及以上的配套设施及构筑物。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>不涉及</td>
<td>无变化</td>
<td></td>
<td></td>
</tr>
<tr>
<td>油罐</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2个单个容量为 25m³的双层柴油罐。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>柴油运输</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>专业运输车辆从油库拉运至站区 2 个 25m³双层柴油罐储存。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>强电工程</td>
<td>供电</td>
<td></td>
<td></td>
</tr>
<tr>
<td>站房 1F 设置配电间，市政引入 10kV 电源，作为变配电站的间线电，并负责站内的工艺及其他设备供电。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>依托现有供电系统。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>排水</td>
<td>厂外接入水源管径为 DN200，站内形</td>
<td></td>
<td></td>
</tr>
<tr>
<td>依托现有供水系统。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>部位</td>
<td>内容</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>供气</td>
<td>由厂区污水处理站厌氧反应器产生的沼气提供，配置内燃式火炬，对于多余沼气进行放空，用于供给给锅炉。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>排水</td>
<td>包括厂区内排水和厂区内排水两部分：厂区内：雨污分流，污污分流，设置两个污水排放口。其中渗滤液等高浓度废水进入厂区自建污水处理站预处理达标；生活污水等低浓度废水经自建一体化污水处理设施处理后达到标后，高、低浓度废水分别排放至市政污水管网。厂外：在厂区内设置一次提升泵，建设污水管线长度约为1460m，管径为DN150的内外涂塑复合钢管，于K1+1460处接入走马镇市政污水管网，将厂区内的污水排入走马乐园污水处理厂处理。排水管线沿进场道路地面敷设，不涉及防爆井等。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>通风系统</td>
<td>包括车间通风和除臭通排风，体现为单体排风和全面排风两种方式，在污水处理站、压缩转运综合处理车间及其参观走廊均设置全面排风系统，在卫生间、锅炉房、油箱间等设置单体排风。</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>空调系统</td>
<td>主要在压缩转运综合处理车间的控制室和参观走廊设置分体式空调机，在综合楼设置分体式空调机。</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>柴油发电机房</td>
<td>位于压缩转运综合处理车间1F的西南角，建筑面积为70m²。用于作为应急电源。</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>油箱间</td>
<td>位于压缩转运综合处理车间1F的西南角，建筑面积为30m²。设置1座油箱，容积为110L。</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>配电室</td>
<td>位于压缩转运综合处理车间1F的南侧，建筑面积为105m²。设置有变电和高低压配电设备。</td>
<td>依托现有配电室。</td>
<td>依托</td>
</tr>
<tr>
<td>提升泵站</td>
<td>项目地块高程比走马污水处理厂低，在生化池出口设置小型提升泵站，设置2台潜污泵。</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>冷却塔</td>
<td>项目设置1座冷却塔，位于厂区南侧污水处理区，配套厌氧反应器维持的中温消化温度。</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>消防</td>
<td>/</td>
<td>站内设置35kg推车式干粉灭火器1台，5kg手提式干粉灭火器4</td>
<td>扩建</td>
</tr>
<tr>
<td>环保工程</td>
<td>生活污水处理设施</td>
<td>设置1座隔油池和3座化粪池，对生活污水、食堂废水、车辆冲洗等低浓度废水处理后排入到生活污水处理设施处理。厂区低浓度废水收集后，进入1套一体化污水处理站内处理，处理规模为100m³/d，处理工艺为A/O+沉淀处理，处理后与污水处理站废水经厂区内不同管路分别排入市政管网，再进入走马乐园污水处理厂。</td>
<td>无变化</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>废气</td>
<td>生产废水</td>
<td>包括对渗滤液、除臭设施废水、生产车间地面冲洗废水、设备清洗废水、车间外地面冲洗废水等高浓度废水收集处理，设置1座污水处理站处理规模为350m³/d。渗滤液处理工艺采用“厌氧+MBR(外置式膜生物反应器)+两级Fenton氧化+两段曝气生物滤池”。</td>
<td>依托现有污水处理站。</td>
</tr>
<tr>
<td>死气</td>
<td>生活垃圾转运废气：对生活垃圾转运的卸料口、除尘室、卸料大厅、压机对接口、清淤间臭气采用集气罩和百叶窗集气口方式分别收集，收集后分别进入8套废气处理设施处理，采用两级生物吸附+纤维吸湿层+活性炭吸附+紫外消毒+植物液喷淋工艺进行处理；厨余垃圾分选卸料废气：厨余分选卸料间、一层压缩转运车间臭气采用集气罩或百叶窗集气口方式收集，并设置2套废气处理设施，采用化学洗涤+纤维吸湿+生物过滤+紫外消毒+活性炭吸附+植物液喷淋工艺进行处理；污水处理站废气：污水处理区的污泥脱水车间及部分处理池的臭气通过风管收集后送至1套除臭净化设备处理，采用工艺为二级化学洗涤+生物过滤+生物滤池+光催化+微气泡处理；污水调节池废气收集后进入1套除臭净化设施，采用化学洗涤+生物滤池+微气泡+光催化+活性炭吸附进行处理；渗滤液调节池废气收集后进入1套除臭净化设施，采用化学洗涤+生物滤池+微气泡+光催化+活性炭吸附进行处理；同时对污水除臭废气配套有加压装置。</td>
<td>不涉及</td>
<td>无变化</td>
</tr>
<tr>
<td>废气类型</td>
<td>处理措施</td>
<td>评价</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>压缩转运综合处理车间废气（厨余分选+有机垃圾转运）</td>
<td>共计12套废气处理设施，最后将以上处理后的废气合并至1根（1#）排气筒排放，合计风量为39.7万m³/h，排放高度距离车间地面约60m高。</td>
<td>不涉及 无变化</td>
<td></td>
</tr>
<tr>
<td>厨余垃圾分选废气：对厨余垃圾分选车间、分选工艺系统的废气采用百叶窗集气口和局部密封集气口进行收集，收集后进入3套废气处理设施； 有机垃圾转运废气：包括厨余果蔬转运卸料、餐厨垃圾进行竖式转运过程中的废气。主要对厨余果蔬垃圾卸料工位、餐厨垃圾卸料工位臭气采用集气罩收集，收集后进入2套废气处理设施处理，一层转运大厅、二层卸料 大厅产生的臭气采用百叶窗集气口方式进行收集，收集后进入2套废气处理设施处理；</td>
<td></td>
<td>无变化</td>
<td></td>
</tr>
<tr>
<td>共计7套废气处理措施，各套废气处理措施均采用化学洗涤+纤维吸湿+生物过滤+紫外消毒+活性炭吸附+植物液喷淋工艺，废气经处理设施分别处理后合并至1根（2#）排气筒排放，合计风量为25.4万m³/h，排放高度距离车间地面约60m高。</td>
<td></td>
<td>无变化</td>
<td></td>
</tr>
<tr>
<td>大件垃圾处理车间除尘系统</td>
<td>设置1套脉冲袋式除尘器，通过1根15m高（3#）排气筒，风量为9000m³/h。</td>
<td>不涉及 无变化</td>
<td></td>
</tr>
<tr>
<td>锅炉废气</td>
<td>通过一根12m高（4#）排气筒排放。</td>
<td>不涉及 无变化</td>
<td></td>
</tr>
<tr>
<td>食堂餐饮</td>
<td>对食堂餐饮油烟设置油烟净化器，处理后升至楼顶排放。</td>
<td>不涉及 无变化</td>
<td></td>
</tr>
<tr>
<td>柴油发电机废气</td>
<td>经专门管道收集后升至楼顶排放。</td>
<td>不涉及 无变化</td>
<td></td>
</tr>
<tr>
<td>车间外臭气</td>
<td>在综合转运站的一层（0.200）、二层（6.200m或8.500m）均配套设置有植物 喷淋除臭；在餐厨果蔬转运工位设置四角设置降尘风炮，大厅进出口设置有工业风幕。</td>
<td>不涉及 无变化</td>
<td></td>
</tr>
<tr>
<td>卸油挥发废气</td>
<td>/</td>
<td></td>
<td>无变化</td>
</tr>
<tr>
<td>生活垃圾</td>
<td>生活垃圾设置垃圾桶收集后，交市政环卫部门清运处理。</td>
<td>无新增人员，工作人员从站内内部调剂。</td>
<td>无变化</td>
</tr>
<tr>
<td>依投工程</td>
<td>已有设施规模</td>
<td>本项目建成后全厂规模</td>
<td>依托可行性</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>污水处理站</td>
<td>处理能力为 350m³/d，站内现有生产污水产生量为 150m³/d。</td>
<td>本次扩建项目地面冲洗废水产生量为 0.036m³/次。扩建项目完成后，全站合计生产废水产生量为 150.036m³/d。</td>
<td>可行</td>
</tr>
<tr>
<td>初期雨水收集池</td>
<td>容积为 291.2m³，站内现有初期雨水产生量为 108m³。</td>
<td>本次扩建项目地面冲洗废水产生量为 0.036m³/次，初期雨水产生量为 1.773m³。扩建项目完成后，初期雨水收集池最大收集废水量为 109.809m³。</td>
<td>可行</td>
</tr>
<tr>
<td>危废废物暂存间</td>
<td>位于站内西南侧，建筑面积 20m²，及时清理交有资质单位处理。</td>
<td>扩建项目产生的危废种类为设备检修废物、清除废物等，严格按要求交有资质单位处理。</td>
<td>可行</td>
</tr>
</tbody>
</table>

2.2.4 扩建项目与现有工程的依托可行性

本项目位于重庆市高新区走马镇大石村走马垃圾二次转运站内的闲置区域，污水处理站、初期雨水收集池、危废暂存间等均依托现有设施，经过现场勘查和企业介绍，其依托情况见表 2-3。

表 2-3 本项目依托情况一览表

<table>
<thead>
<tr>
<th>依托工程</th>
<th>已有设施规模</th>
<th>本项目建成后全厂规模</th>
<th>依托可行性</th>
</tr>
</thead>
<tbody>
<tr>
<td>污水处理站</td>
<td>处理能力为 350m³/d，站内现有生产污水产生量为 150m³/d。</td>
<td>本次扩建项目地面冲洗废水产生量为 0.036m³/次。扩建项目完成后，全站合计生产废水产生量为 150.036m³/d。</td>
<td>可行</td>
</tr>
<tr>
<td>初期雨水收集池</td>
<td>容积为 291.2m³，站内现有初期雨水产生量为 108m³。</td>
<td>本次扩建项目地面冲洗废水产生量为 0.036m³/次，初期雨水产生量为 1.773m³。扩建项目完成后，初期雨水收集池最大收集废水量为 109.809m³。</td>
<td>可行</td>
</tr>
<tr>
<td>危废废物暂存间</td>
<td>位于站内西南侧，建筑面积 20m²，及时清理交有资质单位处理。</td>
<td>扩建项目产生的危废种类为设备检修废物、清除废物等，严格按要求交有资质单位处理。</td>
<td>可行</td>
</tr>
</tbody>
</table>

2.2.5 设备清单

本项目主要生产设备见表2-4。
<table>
<thead>
<tr>
<th>类别</th>
<th>设备名称</th>
<th>规格型号</th>
<th>单位</th>
<th>现有工程</th>
<th>扩建部分</th>
<th>扩建完成后</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>生活垃圾压缩</td>
<td>箱式压缩机</td>
<td>节能环保型</td>
<td>套</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>钢板输送料式卸料槽</td>
<td>12.8×3.2×3.3</td>
<td>套</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>集装箱（含内推油缸及半挂车底盘）</td>
<td>40m³</td>
<td>套</td>
<td>62</td>
<td>0</td>
<td>62</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>地面清洗车</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>维修作业升降机</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>固液分离设备</td>
<td>/</td>
<td>台</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>转运容器</td>
<td>有效容积24</td>
<td>个</td>
<td>46</td>
<td>0</td>
<td>46</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>钢丝牵引机</td>
<td>/</td>
<td>辆</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>卸料溜槽及驱动机构</td>
<td>/</td>
<td>套</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>餐厨垃圾卸料溜槽</td>
<td>/</td>
<td>套</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>场地冲洗设备</td>
<td>/</td>
<td>套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>车辆冲洗设备</td>
<td>/</td>
<td>套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>控制系统</td>
<td>/</td>
<td>套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>工业堆积门</td>
<td>/</td>
<td>个</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>受料斗</td>
<td>有效容积150m³</td>
<td>套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>板链给料机</td>
<td>B2000, L=18900</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>均匀给料器</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>滚筒破袋筛分机</td>
<td>Φ 3000</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>破选机</td>
<td>/</td>
<td>台</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>风选机</td>
<td>/</td>
<td>台</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>打包机</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>滚筒筛分机</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>破碎机</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>各类皮带输送机</td>
<td>/</td>
<td>台</td>
<td>22</td>
<td>0</td>
<td>22</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>液压抓斗机</td>
<td>H</td>
<td>台</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>破碎机</td>
<td>10t/h，双轴剪切式</td>
<td>套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>破选机</td>
<td>/</td>
<td>套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>除尘设备</td>
<td>9000 m³/h</td>
<td>套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td></td>
<td>液压泵站</td>
<td>/</td>
<td>套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>不变</td>
</tr>
<tr>
<td>设备名称</td>
<td>规格型号</td>
<td>数量</td>
<td>备注</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0#柴油罐</td>
<td>容积：25m³</td>
<td>个</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>新增</td>
</tr>
<tr>
<td>加油机</td>
<td></td>
<td>台</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>新增</td>
<td></td>
</tr>
<tr>
<td>加油枪</td>
<td></td>
<td>把</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>新增</td>
<td></td>
</tr>
<tr>
<td>通气管</td>
<td></td>
<td>根</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>新增</td>
<td></td>
</tr>
<tr>
<td>高液位报警装置</td>
<td></td>
<td>个</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>新增</td>
<td></td>
</tr>
<tr>
<td>静电接地仪</td>
<td></td>
<td>个</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>新增</td>
<td></td>
</tr>
<tr>
<td>静电接地报警器</td>
<td></td>
<td>个</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>新增</td>
<td></td>
</tr>
<tr>
<td>卸油油气回收装置</td>
<td></td>
<td>个</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>新增</td>
<td></td>
</tr>
</tbody>
</table>

2.2.6 原辅材料

本项目主要原辅材料消耗量见表 2-5。
表 2-5 主要原辅材料及能源消耗量一览表

<table>
<thead>
<tr>
<th>序号</th>
<th>原料名称</th>
<th>单位</th>
<th>现有工程</th>
<th>扩建部分</th>
<th>扩建完成后</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>水</td>
<td>m³/a</td>
<td>37880.6</td>
<td>4.88</td>
<td>37885.48</td>
</tr>
<tr>
<td>2</td>
<td>电</td>
<td>×10^4 kwh/a</td>
<td>983.08</td>
<td>8.76</td>
<td>991.84</td>
</tr>
<tr>
<td>3</td>
<td>微生物植物液除臭剂</td>
<td>t/a</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>活性炭</td>
<td>t/a</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>液压油</td>
<td>t/a</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>消泡剂</td>
<td>t/a</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>盐酸</td>
<td>t/a</td>
<td>200</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>次氯酸钠</td>
<td>t/a</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>碳源</td>
<td>t/a</td>
<td>110</td>
<td>0</td>
<td>110</td>
</tr>
<tr>
<td>10</td>
<td>PAM</td>
<td>t/a</td>
<td>17</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>双氧水</td>
<td>t/a</td>
<td>800</td>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>12</td>
<td>硫酸亚铁</td>
<td>t/a</td>
<td>800</td>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>13</td>
<td>液碱</td>
<td>t/a</td>
<td>700</td>
<td>0</td>
<td>700</td>
</tr>
<tr>
<td>14</td>
<td>营养液</td>
<td>t/a</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>沼气</td>
<td>万m³/a</td>
<td>216.7</td>
<td>0</td>
<td>216.7</td>
</tr>
<tr>
<td>16</td>
<td>0#柴油</td>
<td>t/a</td>
<td>0</td>
<td>3274</td>
<td>3274</td>
</tr>
</tbody>
</table>

本项目柴油预计年周转量如下表 2-6 所示。

表 2-6 项目原辅材料消耗及能耗情况一览表

<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>日周转量</th>
<th>年周转量</th>
<th>最大储存量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0#柴油</td>
<td>8.9</td>
<td>3274</td>
<td>3920.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>日周转量</th>
<th>年周转量</th>
<th>最大储存量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0#柴油</td>
<td>8.9</td>
<td>3274</td>
<td>3920.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0#柴油</td>
<td>0.835g/mL</td>
</tr>
</tbody>
</table>

注: 0#柴油密度取 0.835g/mL。

主要原辅材料理化性质见表 2-7。

表 2-7 原辅材料理化性质一览表

<table>
<thead>
<tr>
<th>名称</th>
<th>主要成分</th>
<th>理化性质及危险特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>柴油</td>
<td>由各族烃类和非烃类组成</td>
<td>棕色透明液体，易挥发，沸点：180-360℃，湘桂密度 0.70-0.85g/cm³，易燃，燃烧热 43987KJ/kg，具刺激性，不溶于水，溶于醇等溶剂，爆炸极限：0.6-6.5%。皮肤接触为主要吸收途径，可引起接触性皮炎，油性痤疮。吸入其雾滴或液体可引起吸入性肺炎，能经胎盘进入胎儿血中。柴油废气可引起眼、鼻刺激症状，头晕及头痛。</td>
</tr>
</tbody>
</table>

2.2.7 劳动定员及工作制度

现有工作人员 160 人，年工作 365 天，每天 2 班制，每班工作 8 小时，餐厨垃圾操作员每天 3 班制，每班工作 24 小时，本次扩建项目需员工 3 人，均从站内进行调配，不新增工作人员，每天 1 班制，每班工作 8 小时。

2.2.8 水平衡
（1）用水

项目每 3 天对加油区和卸油区等站内无建筑区冲洗一次，约 122 次/a，地面
冲洗面积约为 20m²，用水量为 2L/m²·次，清洁用水量约为 4.88m³/a。

本项目用水量、排水量详见表 2-8，本项目水平衡图见图 2-1、2-2。

表 2-8 项目用水、排水量一览表

<table>
<thead>
<tr>
<th>类别</th>
<th>用水规模</th>
<th>用水标准</th>
<th>最大日用水量（m³/d）</th>
<th>年用水量（m³/a）</th>
<th>最大日排水量（m³/d）</th>
<th>年排水量（m³/a）</th>
</tr>
</thead>
<tbody>
<tr>
<td>地面冲洗用水</td>
<td>20m²</td>
<td>2L/m²·次</td>
<td>0.04</td>
<td>4.88</td>
<td>0.036</td>
<td>4.39</td>
</tr>
</tbody>
</table>

（2）排水

本项目产生的废水主要为地面冲洗废水和初期雨水经截流沟收集后，进入
初期雨水收集池，再排入厂区现有污水处理站处理达《生活垃圾填埋场污染控
制标准》（GB16889-2008）表 2 标准后进入市政污水管网；食堂废水经隔油池预处
理后与生活污水、车辆冲洗水一起进入生活污水处理设施处理达《污水综合排
放标准》（GB8798-1996）三级标准后进入市政污水管网。

生活污水和生产废水经市政污水管网排入走马乐园污水处理厂深度处理，
走马乐园污水处理厂属于梁滩河流域重点控制区域，走马乐园污水处理厂
COD、氨氮执行《梁滩河流域城镇污水处理厂主要污染物排放标准》
（DB50/963-2020），其他污染物执行《城镇污水处理厂污染物排放标准》
（GB18918-2002）一级 A 标准后排入梁滩河。

扩建项目给排水平衡图见图 2-1。

图 2-1 扩建项目水平衡图 m³/d

扩建后全站给排水平衡图见图 2-2。
图 2-2 扩建后全站水平衡图 m³/d

2.2.9 总平面布置

本项目位于重庆市高新区走马镇大石村走马垃圾二次转运站内，设一座阻
隔防爆撬装式加油设备。整个橇装加油装置设于地面上，设置 2 个双层钢制油
罐（卧式储罐），单个容积为 25m³，配有 1 台双枪加油机、自动灭火器、紧急泄
压装置、防溢流装置、自动断油保护、内部燃烧抑制装置。

项目总平面布置详见附图 2。

36
2.3 施工期产排污分析

项目施工期主要为加油装置地面安装，不涉及土方开挖。施工期较短，主要污染为安装时产生的机械噪声。

2.4 运营期生产工艺流程及产污环节

本项目运营期工艺流程主要包括卸油、加油及清罐三部分。

柴油作业工艺流程及产污环节见下图 2-3。

图 2-3 柴油作业工艺流程及产污环节图

工艺说明:

① 卸油：油罐车拉油到撬装加油装置现场，将阻隔防爆撬装式燃油加油装置自带的静电接地夹到油罐车相应的地方，把装置自带的密封快速接头和罐车油管连接，将罐车内的油卸入罐内，卸油过程是密封的。撬装加油装置设置有一次油气回收系统（卸油油气回收）。

② 储油：柴油通过潜油泵从油罐输送至加油机，再通过配套加油枪给加油车辆加油。加油过程中通过计量器进行计量，加油车辆油箱随着柴油的注入，油箱内产生的油气逸散至大气中。

③ 加油：由工作人员人工进行提枪加油。提枪加油时，控制系统启动安装在油罐入孔上的油泵将油品经加油枪向汽车油箱加油，加油完毕后收枪复位，控制系统终止油泵运行。

④ 油罐维护

加油站下述情况下要进行油罐清洗维护：新建油罐装油之前；换装不同种类的油料，原储油料对新换装的油料有影响时；需要对油罐进行明火烧烤或清除油漆时；装油时间较长，罐内较脏时要清洗。本加油站每 5 年对油罐进行清洗，建设单位委托专业公司进行清理，清理产生的废油渣
及废油水由专业的有相应资质的危废公司清理、转运、处置，不在场地内贮存。

2.5 与本项目有关的原有污染情况及主要环境问题

2.5.1 企业概况

重庆市固体废弃物运输有限公司西部分公司走马垃圾二次转运站项目位于重庆市高新区走马镇大石村，配套服务于百果园垃圾焚烧厂和洛碛餐厨垃圾处理厂等，该项目为大型垃圾二次转运站，生活垃圾转运 3000t/d，有机垃圾转运规模为 1000t/d（其中餐厨垃圾转运 500t/d，果蔬垃圾 300t/d，厨余垃圾有机物 200t/d)，厨余垃圾分选 500t/d（分选后 200t/d 的纳入有机垃圾转运系统，270t/d 纳入生活垃圾转运系统），处理大件垃圾为 50t/d（处理后纳入生活垃圾转运系统）。为满足走马垃圾二次转运站内部车辆加柴油的需求，重庆市固体废弃物运输有限公司西部分公司拟投资 70 万元，在走马垃圾二次转运站内，建设“重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目”。项目运行后，仅供走马垃圾二次转运站内部车辆加油，不对外销售。

2.5.2 环保手续完成情况

2015 年 5 月，重庆浩力环境影响评价有限公司编制完成了《走马垃圾二次转运站项目环境影响报告表》，2015 年 5 月 26 日，重庆市九龙坡区生态环境局（原重庆市九龙坡区环境保护局）以“渝（九）环准[2015]090号”对该项目进行了批复。

2020 年，由于垃圾站处理规模发生变化，重庆市环卫集团有限公司委托重庆浩力环境影响评价有限公司 2020 年 4 月对走马垃圾二次转运站项目进行了重新报批，并获得重庆市高新区生态环境局出具的环境影响评价文件批准书“渝（高新）环准[2020]008 号”。

2021 年 2 月，重庆市环卫集团有限公司委托重庆浩力环境影响评价有限公司编制了《走马垃圾二次转运站项目重大变动界定报告》，并界定为非重大变更。

该项目于 2021 年 5 月投产试运行，重庆市环卫集团有限公司将该项目日常经营管理工作全部交由重庆市固体废弃物运输有限公司西部分公司负
责，重庆市固体废弃物运输有限公司西部分公司为重庆市环卫集团有限公司的全资子公司。

2021 年 5 月，取得固定污染源排污许可证（证书编号：91500107MA611XLR9T004Q）。

2022 年 4 月，重庆市固体废弃物运输有限公司西部分公司委托重庆吉麟科技发展有限公司编制完成了《重庆市固体废弃物运输有限公司西部分公司走马垃圾二次转运站项目竣工环境保护验收监测报告表》，并取得专家组意见。

2.5.3 现有工程主要污染物排放情况、污染防治措施及治理效果

（1）废水治理设施

现有项目生活污水、食堂废水、车辆冲洗等低浓度废水处理后排入到 1 套一体化生活污水处理设施处理，处理规模为 100m³/d，处理工艺为 A/O+沉淀处理；渗滤液、除臭设施废水、生产车间地面冲洗废水、设备清洗废水、车间外地面冲洗废水等排入 1 座污水处理站处理，处理规模为 350m³/d。渗滤液处理工艺采用“厌氧+MBR（外置式膜生物反应器）+两级 Fenton+两级曝气生物滤池”。

生活污水处理设施处理的废水达《污水综合排放标准》（GB8978-1996）三级标准后排入市政管网，污水处理站处理的废水达《生活垃圾填埋场污染控制标准》（GB16889-2008）表 2 标准后排入市政管网，生活污水处理设施外排废水与污水处理站外排废水经厂区内不同管线分别排入市政管网，再进入走马乐园污水处理厂深度处理。

走马乐园污水处理厂属于梁滩河流域重点控制区域，走马乐园污水处理厂 COD、氨氮执行《梁滩河流域城镇污水处理厂主要污染物排放标准》（DB50/963-2020），其他污染物执行《城镇污水处理厂污染物排放标准》（GB18918-2002）一级 A 标准后排入梁滩河。

根据《走马垃圾二次转运站项目竣工环境保护验收监测报告》（报告编号：开创环（检）字【2021】第 YS235 号）可知，生活污水排放口各项因子均满足《污水综合排放标准》（GB8978-1996）三级标准限值要求，氨氮满足《污水排入城镇下水道水质标准》（GB/T31962-2015），生产废水排放
各项因子均满足《生活垃圾填埋场污染控制标准》(GB16889-2008)表2标准限值要求。具体结果如下所示。

表2-9 废水排放口监测结果一览表

<table>
<thead>
<tr>
<th>监测时间</th>
<th>污染因子</th>
<th>排放浓度 mg/L</th>
<th>标准限值 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>生活污水排口 DW001</td>
<td>化学需氧量</td>
<td>66</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>五日生化需氧量</td>
<td>25.4</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>氨氮</td>
<td>1.16</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>悬浮物</td>
<td>17</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>动植物油</td>
<td>0.08</td>
<td>100</td>
</tr>
<tr>
<td>生活污水处理站 DW001</td>
<td>化学需氧量</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>五日生化需氧量</td>
<td>26.5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>氨氮</td>
<td>17.5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>悬浮物</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>石油类</td>
<td>0.06L</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>总磷</td>
<td>0.05</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>总氮</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>总铅</td>
<td>0.05L</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>总镉</td>
<td>0.01L</td>
<td>0.01</td>
</tr>
</tbody>
</table>

根据现有工程《竣工环境保护验收监测报告》可知，废水排放口各项因子均能满足达标排放要求。

(2) 废气治理设施

项目运营期大气污染主要为生活垃圾转运废气、厨余垃圾分选卸料废气、污水处理站废气、厨余垃圾分选废气、有机垃圾转运废气，大件垃圾破碎过程产生的粉尘废气，食堂产生的油烟，柴油发电机废气、车间外臭气等。

①压缩转运综合处理车间废气（生活垃圾转运+污水处理站+厨余垃圾分选卸料）

生活垃圾转运废气：对生活垃圾转运的卸料口、除尘室、卸料大厅、压机对接口、清淤间臭气采用集气罩和百叶窗集气口方式进行收集，收集后分别进入8套废气处理设施处理，采用两级生物吸附+纤维吸湿层+活性炭吸附+紫外消毒+植物液喷淋工艺进行处理；

厨余垃圾分选卸料废气：厨余分选卸料间、一层压缩转运车间臭气采用集气罩或百叶窗集气口方式进行收集，并设置2套废气处理设施，采用化学洗涤+纤维吸湿+生物过滤+紫外消毒+活性炭吸附+植物液喷淋工艺进行处
污水处理站废气：污水处理区的污泥脱水车间及部分处理池的臭气通过风管收集后送至 1 套除臭净化设备处净化，采用工艺为二级化学洗涤+生物过滤+植物液洗涤+光催化+活性炭吸附进行处理；渗滤液调节池废气收集后进入 1 套除臭净化设施，采用化学洗涤+生物滤池+微气泡+光催化+活性炭进行处理；同时对污水除臭废气配置有加压装置；共计 12 套废气处理设施，最后将以上处理后的废气合并至 1 根 (1#) 排气筒排放，排放高度距离车间地面约 60m 高。

②压缩转运综合处理车间废气（厨余分选+有机垃圾转运）

厨余垃圾分选废气：对厨余垃圾分选车间、分选工艺系统的废气采用百叶窗集气口和局部密封集气口进行收集，收集后进入 3 套废气处理措施，采用化学洗涤+纤维吸湿+生物过滤+活性炭吸附+植物液喷淋工艺进行处理。

有机垃圾转运废气：包括厨余果蔬转运卸料、餐厨垃圾进行竖式转运过程中的废气。主要对厨余果蔬转运卸料工位、餐厨垃圾卸料工位臭气采用集气罩收集，收集后进入 2 套废气处理设施处理，一层转运大厅、二层卸料大厅产生的臭气采用百叶窗集气口方式进行收集，收集后进入 2 套废气处理设施处理，4 套处理措施均采用化学洗涤+纤维吸湿+生物过滤+活性炭吸附+植物液喷淋工艺进行处理；共计 7 套废气处理设施，最后将以上处理后的废气合并至 1 根 (2#) 排气筒排放，排放高度距离车间地面约 60m 高。

③大件垃圾处理车间废气

大件垃圾处理车间除尘废气设置 1 套脉冲袋式除尘器，通过 1 根 15m 高 (3#) 排气筒排放。

④锅炉废气

锅炉废气收集后通过 1 根 12m 高 (4#) 排气筒排放。

⑤食堂油烟

食堂餐饮油烟设置一套油烟净化器，处理后升至楼顶排放。

⑥柴油发电机废气
柴油发电机废气经专门管道收集后升至楼顶排放。

⑦车间外臭气

车间外臭气在综合转运站的一层(0.200)、二层(6.200m或8.500m)均配套设置有植物喷淋除臭；在餐厨果蔬转运工位设置四角设置降尘风炮，大厅进出口设置有工业风幕。

根据《走马垃圾二次转运站项目竣工环境保护验收监测报告》（报告编号：开创环（检）字【2021】第YS235号）可知，各废气排放口监测结果如下表所示。

<table>
<thead>
<tr>
<th>表2-10 废气监测结果一览表</th>
</tr>
</thead>
<tbody>
<tr>
<td>污染源</td>
</tr>
<tr>
<td>1#排气简DA001</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2#排气简DA002</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

根据上表监测结果可知，各排气筒有组织废气颗粒物能满足《大气污染物综合排放标准》（DB 50418-2016）表1中主城区排放限值，氨和硫化氢能满足《恶臭污染物排放标准》（GB 14554-93）表2排放限值的要求。

（3）噪声治理设施

项目噪声源主要为压缩设备、风机、搅拌机、水泵、运输车辆及物料传输装置运转过程中产生的噪声。主要采取基础减振等措施综合治理。根据监测结果噪声治理设施的降噪效果较好，厂界噪声满足排放标准要求。

（4）固体废物治理设施

①一般工业固体废物

一般工业固体废物有废金属、废MBR膜、初效过滤废渣及纸张、塑料木料等非金属等，分类收集后暂存间于一般固废暂存间，外售给相应的物料回收单位。除臭净化填料由设备厂家更换时回收。

②危险废物

废机油、废活性炭、废棉纱和手套等危险废物收集后分类暂存于危废暂存间内，定期交由重庆云青环保科技有限公司处置，污水处理站污泥交
环卫部门处理。

危险废物分类收集后分类暂存于机修车间内的现有危险废物贮存间内（约 20m²），定期交由重庆市环境保护科技有限公司转运处置并实行联单制管理。

根据《危险废物贮存污染控制标准》（GB18597-2023）要求，现有危废暂存间满足“六防”（防风、防晒、防雨、防漏、防渗、防腐）要求，现场无露天堆放危险废物。危废暂存间内根据危险废物的类别、数量、形态、物理化学性质和污染防治等设置贮存分区，避免不相容的危险废物接触、混合。危废暂存间内地面与裙脚采取表面防渗措施；贮存的液体危险废物物料桶下设置托盘，不直接接触地面。危废暂存间内设置灭火器等消防应急设备，危废暂存间外设置应急物资存放处。

③生活垃圾

生活垃圾分类袋装收集后由市政环卫部门统一处置。

<table>
<thead>
<tr>
<th>表2-11 现有污染物产生情况一览表</th>
</tr>
</thead>
<tbody>
<tr>
<td>污染因子</td>
</tr>
<tr>
<td>H₂S</td>
</tr>
<tr>
<td>NH₃</td>
</tr>
<tr>
<td>粉尘</td>
</tr>
<tr>
<td>SO₂</td>
</tr>
<tr>
<td>NOₓ</td>
</tr>
<tr>
<td>颗粒物</td>
</tr>
<tr>
<td>非甲烷总烃</td>
</tr>
<tr>
<td>NOx、烟尘、SO₂、CO</td>
</tr>
<tr>
<td>H₂S、NH₃、臭气浓度、总悬浮颗粒物</td>
</tr>
<tr>
<td>COD</td>
</tr>
<tr>
<td>BOD₅</td>
</tr>
<tr>
<td>SS</td>
</tr>
<tr>
<td>NH₃-N</td>
</tr>
<tr>
<td>TN</td>
</tr>
<tr>
<td>TP</td>
</tr>
<tr>
<td>动植物油</td>
</tr>
<tr>
<td>石油类</td>
</tr>
<tr>
<td>废金属</td>
</tr>
<tr>
<td>废 MBR 膜</td>
</tr>
<tr>
<td>初效过滤废物</td>
</tr>
<tr>
<td>纸张、塑料木等非金属</td>
</tr>
<tr>
<td>除臭净化填料</td>
</tr>
</tbody>
</table>
2.6 现有项目存在的问题及整改措施

（1）原有项目环保投诉情况

重庆市固体废弃物运输有限公司西部分公司走马垃圾二次转运站未发生环保投诉问题。

（2）存在问题

危废暂存间标识、标牌未更新。

（3）“以新带老”措施

及时更新危废暂存间标识、标牌。
三、区域环境质量现状、环境保护目标及评价标准

3.1 区域环境质量现状

3.1.1 大气环境质量现状

（1）区域环境空气质量达标判定

本项目位于重庆市高新区走马镇大石村走马垃圾二次转运站内，根据《环境空气质量标准》（GB3095-2012），项目区域大气环境功能区划属二类区。

本次评价利用重庆市生态环境局发布的《2022年重庆市生态环境状况公报》的环境空气质量监测数据，对本项目所在区域的环境空气达标情况进行判定，评价结果见下表。

<table>
<thead>
<tr>
<th>污染物</th>
<th>年评价指标</th>
<th>单位</th>
<th>浓度</th>
<th>标准值</th>
<th>占标率</th>
<th>达标情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>年平均</td>
<td>µg/m³</td>
<td>50</td>
<td>70</td>
<td>71.4%</td>
<td>达标</td>
</tr>
<tr>
<td>PM2.5</td>
<td>年平均</td>
<td>µg/m³</td>
<td>34</td>
<td>35</td>
<td>97.1%</td>
<td>达标</td>
</tr>
<tr>
<td>SO2</td>
<td>年平均</td>
<td>µg/m³</td>
<td>8</td>
<td>60</td>
<td>13.3%</td>
<td>达标</td>
</tr>
<tr>
<td>NO2</td>
<td>年平均</td>
<td>µg/m³</td>
<td>39</td>
<td>40</td>
<td>97.5%</td>
<td>达标</td>
</tr>
<tr>
<td>O3</td>
<td>日最大8小时平均浓度的第90百分位数</td>
<td>µg/m³</td>
<td>154</td>
<td>160</td>
<td>96.3%</td>
<td>达标</td>
</tr>
<tr>
<td>CO</td>
<td>日平均浓度的第95百分位数</td>
<td>mg/m³</td>
<td>1.4</td>
<td>4</td>
<td>35.0%</td>
<td>达标</td>
</tr>
</tbody>
</table>

由上表可知，项目所在的区域环境空气中PM10、PM2.5、SO2、NO2、O3、CO等污染物均满足《环境空气质量标准》（GB3095-2012）二级标准，区域城市环境空气质量为达标区。

（2）其他污染物环境质量现状

本次评价特征因子非甲烷总烃委托重庆博信检测技术有限公司于2023年7月3日-2023年7月5日，对项目所在地环境空气质量进行了监测。监测点距离本项目约15m，监测结果统计见下表。

① 监测点位：厂界南侧15m处，详见附图5：
② 监测因子：非甲烷总烃；
③ 监测频率及周期：连续监测3天，每天监测4次；
评价方法
采用占标率法对空气环境质量特征污染因子现状进行评价。占标率公式如下：

\[P_i = \frac{C_{ij}}{C_{si}} \times 100\% \]

式中：\(P_i \)——第 \(i \) 现状监测点污染因子 \(j \) 的占标率，其值在 0~100% 之间为满足标准，大于 100% 则为超标。

\(C_{ij} \)——第 \(i \) 现状监测点污染因子 \(j \) 的实测浓度（mg/m³）；

\(C_{si} \)——污染因子 \(j \) 的环境质量标准（mg/m³）。

项目特征污染物环境空气现状监测结果统计及评价详见表。

<table>
<thead>
<tr>
<th>监测因子</th>
<th>监测值类型</th>
<th>浓度值范围</th>
<th>标准限值</th>
<th>超标率%</th>
<th>最大占标率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>非甲烷总烃</td>
<td>小时值</td>
<td>0.5~0.8</td>
<td>2.0</td>
<td>/</td>
<td>40</td>
</tr>
</tbody>
</table>

由上表可知，本项目所在地环境空气中非甲烷总烃满足《环境空气质量非甲烷总烃限值》（DB13/1577-2012）二级标准要求。

3.1.2 地表水环境质量现状

根据渝府发[2012]4 号《重庆市人民政府批转重庆市地表水功能类别调整方案的通知》，项目所在区域梁滩河水域范围属 \(V \) 类水域，执行 \(V \) 类水域水质标准。

本次评价引用《西永微电子产业园区环保管家项目（2021-2022 年）监测》中对梁滩河入园处及西永污水处理厂上游的监测数据，自监测以来区域未新增重大污染源，其监测数据能反应区域环境地表水质量现状，满足3年有效期，数据引用有效。

①监测时间：2021年9月22日-9月24日
②监测因子：pH、COD、BOD₅、NH₃-N、石油类
③监测断面：梁滩河入园处及西永污水处理厂上游的梁滩河断面。
④监测结果统计及现状评价
本评价采用标准污染指数法进行地表水环境质量现状评价。
a一般水质因子（随水质浓度增加而水质变差的水质因子）
式中: $S_{i,j} = C_{i,j} / C_{s,i}$

式中：$S_{i,j}$——水质指数；
$C_{i,j}$——评价因子i在j点的实测浓度值（mg/L）；
$C_{s,i}$——评价因子i的评价标准限值（mg/L）。

b特殊水质因子pH的指数计算公式

$$\text{pH}_{j} \leq 7.0 \quad S_{\text{pH},j} = \left(7.0 - \text{pH}_{j} \right) / \left(7.0 - \text{pH}_{\text{sd}} \right)$$

$$\text{pH}_{j} > 7.0 \quad S_{\text{pH},j} = \left(\text{pH}_{j} - 7.0 \right) / \left(\text{pH}_{\text{su}} - 7.0 \right)$$

式中: $S_{\text{pH},j}$——pH值的指数，大于1表明该水质因子超标；
pH_{j}——pH实测值；
pH_{sd}——评价标准中pH的下限值；
pH_{su}——评价标准中pH的上限值；

⑤监测结果分析

地表水水质监测及评价结果见下表。

表3-3 地表水环境质量现状监测结果一览表 单位mg/L

<table>
<thead>
<tr>
<th>断面</th>
<th>指标</th>
<th>pH（无量纲）</th>
<th>COD</th>
<th>BOD$_5$</th>
<th>氨氮</th>
<th>油类</th>
</tr>
</thead>
<tbody>
<tr>
<td>梁滩河入园</td>
<td>浓度</td>
<td>7.25-7.32</td>
<td>16-18</td>
<td>3.2-3.7</td>
<td>1.88-1.96</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>$S_{i,j}$</td>
<td>0.32</td>
<td>0.45</td>
<td>0.37</td>
<td>0.98</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>超标率（%）</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>西永污水</td>
<td>浓度</td>
<td>7.48-7.51</td>
<td>17-19</td>
<td>2.9-3.6</td>
<td>0.848-0.892</td>
<td>L</td>
</tr>
<tr>
<td>处理厂上游</td>
<td>$S_{i,j}$</td>
<td>0.51</td>
<td>0.48</td>
<td>0.36</td>
<td>0.45</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>超标率（%）</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V类水质标准</td>
<td></td>
<td>6-9</td>
<td>40</td>
<td>10</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

由上表可知，梁滩河监测断面各监测因子$S_{i,j}$值均小于1，均满足《地表水环境质量标准》（GB3838-2002）V类水域标准要求。

3.1.3 声环境质量现状

根据《建设项目环境影响报告表编制指南》（污染影响类），本项目位于重庆市高新区走马镇大石村走马垃圾二次转运站内，项目周边50m范围内无声环境保护目标，因此本项目不进行声环境质量现状监测。

3.1.4 地下水环境
本项目为加油站项目，可能存在地下水环境污染途径，需开展地下水环境污染现状调查，以留做背景值。本次评价委托重庆博信检测技术有限公司于 2023 年 7 月 3 日进行地下水环境现状监测，监测点位距离本项目约 212m，评价认为其监测数据引用可行。

①监测内容
监测点位：DX-1，详见附图 5；
监测因子：pH、HCO₃⁻、CO₃²⁻、氨氮、高锰酸盐指数（耗氧量）、亚硝酸盐、氯化物（Cl⁻）、硝酸盐、硫酸盐（SO₄²⁻）、Na⁺、K⁺、Mg²⁺、Ca²⁺、阴离子表面活性剂、挥发酚、石油类；
监测频次：监测 1 天，1 天 1 次。

②评价标准和评价方法
地下水现状执行《地下水质量标准》（GBT14848-2017）III 类标准限值，其中石油类参照执行《地表水环境质量标准》（GB3838-2002）III 类水域标准。本评价采用与地表水评价相同的评价方法，水质指数法其计算公式如下:

\[S_{ij} = \frac{C_{ij}}{C_{si}} \]

式中：\(S_{ij} \)— 单项水质参数 i 在第 j 点的标准指数；
\(C_{ij} \)— 第 i 类污染物在第 j 点的污染物平均浓度（mg/l）；
\(C_{si} \)— 第 i 类污染物的评价标准（mg/l）。

pH 的标准指数用下式计算：

\[S_{pH,j} = \begin{cases} 7.0 - pH_j & \text{若 } pH_j \leq 7.0 \\ \frac{pH_j - 7.0}{pH_{su} - 7.0} & \text{若 } pH_j > 7.0 \end{cases} \]

式中：\(S_{pH,j} \)— pH 在第 j 点的标准指数；
\(pH_{sd} \)— 水质标准中 pH 值的下限；
\(pH_{su} \)— 水质标准中 pH 值的上限。
pH_j—第 j 点 pH 值的平均值。

③监测结果及分析

地下水现状监测值和评价结果见表 3-4、表 3-5。

表 3-4 地下水现状监测结果统计一览表 单位：mg/L

<table>
<thead>
<tr>
<th>监测因子</th>
<th>标准值</th>
<th>监测值</th>
<th>S_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH（无量纲）</td>
<td>6.5-8.5</td>
<td>7.2</td>
<td>0.133</td>
</tr>
<tr>
<td>氨氮</td>
<td>≤0.5</td>
<td>0.313</td>
<td>0.626</td>
</tr>
<tr>
<td>高锰酸盐指数^{①}</td>
<td>≤3.0</td>
<td>2.8</td>
<td>0.933</td>
</tr>
<tr>
<td>亚硝酸盐</td>
<td>≤1.0</td>
<td>0.153</td>
<td>0.153</td>
</tr>
<tr>
<td>硝酸盐</td>
<td>≤20</td>
<td>8.93</td>
<td>0.447</td>
</tr>
<tr>
<td>阴离子表面活性剂</td>
<td>≤20</td>
<td>0.05L</td>
<td>未检出</td>
</tr>
<tr>
<td>挥发酚</td>
<td>≤0.002</td>
<td>0.0008</td>
<td>0.4</td>
</tr>
<tr>
<td>石油类^{②}</td>
<td>≤0.05</td>
<td>0.01L</td>
<td>未检出</td>
</tr>
</tbody>
</table>

注：①根据《地下水质量标准》(GB/T14848-2017)，耗氧量采用高锰酸盐的检测方法，监测报告中以高锰酸盐指数代表耗氧量；
②石油类标准参照《地表水环境质量标准》(GB3838-2002)中Ⅲ类执行，未检出时按检出限计。

表 3-5 地下水八大离子现状监测及评价结果 单位：mg/L

<table>
<thead>
<tr>
<th>监测因子</th>
<th>K^+</th>
<th>Na^+</th>
<th>Ca^{2+}</th>
<th>Mg^{2+}</th>
<th>CO_3^{2-}</th>
<th>HCO_3^-</th>
<th>Cl^-</th>
<th>SO_4^{2-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>监测值</td>
<td>18.8</td>
<td>17.6</td>
<td>62.8</td>
<td>9.58</td>
<td>0.0</td>
<td>227.6</td>
<td>10.1</td>
<td>25.9</td>
</tr>
</tbody>
</table>

根据表 3-4、表 3-5 可知，本项目所在地地下水各监测因子浓度均满足《地下水质量标准》Ⅲ类标准要求。

3.1.5 土壤环境

本项目为三级加油站项目，主要供应走马垃圾二次转运站内部车辆所需的 0#柴油，可能存在土壤环境污染途径，本次评价在场地内设置 1 个土壤表层样背景监测点。评价委托重庆博信检测技术有限公司于 2023 年 7 月 3 日对项目地块土壤环境现状进行监测。

①监测内容

根据区域周边土壤特点和土地功能，本项目监测点位及监测项目见表 3-6。
表 3-6 本项目土壤监测布点情况表

<table>
<thead>
<tr>
<th>序号</th>
<th>监测点位位置</th>
<th>检测项目</th>
<th>取样分层</th>
<th>监测时间</th>
<th>土地性质</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-1</td>
<td>项目地块内南侧（106.303694E, 29.475357N）</td>
<td>汞、砷、铜、铅、镍、镉、六价铬、挥发性有机物（四氯化碳、氯仿、氯甲烷、1,1-二氯乙烯、1,2-二氯乙烯、1,1-二氯乙烯、1,2-二氯乙烷、1,1-二氯乙烯、1,2-二氯乙烷、1,2-二氯乙烯、1,2-二氯乙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烯、四氯乙烯、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烯、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、1,2-三氯乙烯、1,2,3-三氯丙烯、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯）、半挥发性有机物（硝基苯、苯胺、2-氯酚、苯并[a]芘、苯并[k]氟蒽、苯并[g]氟蒽、苯并[a, h]芘、苯并[1,2,3-cd]芘、石油烃（C_{10}-C_{30}）</td>
<td>表层样</td>
<td>2023.7.3</td>
<td>环卫用地</td>
</tr>
</tbody>
</table>

②评价标准及方法

评价标准：执行《土壤环境质量 建设用地土壤污染风险管控标准（试行）》（GB36600-2018）中第二类用地风险筛选值。

评价方法：采用标准指数法进行评价:

\[I_i = \frac{C_i}{S_i} \]

式中：\(I_i\) 为污染物单项指数；

\(C_i\) 为污染物的实测浓度 \((\text{mg/Nm}^3)\);

\(S_i\) 为污染物的评价标准 \((\text{mg/Nm}^3)\)。

当 \(I_i\) 值大于 1.0 时，表明评价区土壤已受到该项评价因子所表征的污染物的污染，\(I_i\) 值愈大，受污染程度越重，否则反之。

③评价结果

污染物指数统计结果见下表 3-7。
<table>
<thead>
<tr>
<th>监测点</th>
<th>序号</th>
<th>监测因子</th>
<th>监测值</th>
<th>标准值</th>
<th>达标情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1</td>
<td>特征因子</td>
<td>石油烃(C_{10}~C_{40})</td>
<td>36</td>
<td>4500</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>锰</td>
<td>0.16</td>
<td>65</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>铅</td>
<td>0.062</td>
<td>38</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>铬</td>
<td>24.2</td>
<td>800</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>砷</td>
<td>29</td>
<td>900</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>铜</td>
<td>3.84</td>
<td>60</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>铬（六价）</td>
<td>23</td>
<td>18000</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>四氯化碳</td>
<td>1.3×10^3</td>
<td>2.8</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>氯仿</td>
<td>1.1×10^3</td>
<td>0.9</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>氯甲烷</td>
<td>1.0×10^3</td>
<td>37</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1,1-二氯乙烯</td>
<td>1.2×10^3</td>
<td>9</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1,2-二氯乙烯</td>
<td>1.3×10^3</td>
<td>5</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1,1-二氯乙烯</td>
<td>1.0×10^3</td>
<td>66</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1,2-二氯乙烯</td>
<td>1.3×10^3</td>
<td>599</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>反-1,2-二氯乙烯</td>
<td>1.4×10^3</td>
<td>54</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>氯甲烷</td>
<td>1.5×10^3</td>
<td>616</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1,2-二氯丙烷</td>
<td>1.1×10^3</td>
<td>5</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1,1,1-三氯乙烷</td>
<td>1.2×10^3</td>
<td>10</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1,1,2-三氯乙烷</td>
<td>1.2×10^3</td>
<td>6.8</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>四氯乙烯</td>
<td>1.4×10^3</td>
<td>53</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1,1-三氯乙烯</td>
<td>1.3×10^3</td>
<td>840</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1,1,2-三氯乙烯</td>
<td>1.2×10^3</td>
<td>2.8</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2,3-二氯乙烯</td>
<td>1.2×10^3</td>
<td>2.8</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1,2,3-三氯丙烷</td>
<td>1.2×10^3</td>
<td>0.5</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>氯乙烯</td>
<td>1.0×10^3</td>
<td>0.43</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>苯</td>
<td>1.9×10^3</td>
<td>4</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>氯苯</td>
<td>1.2×10^3</td>
<td>270</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1,2-二氯苯</td>
<td>1.5×10^3</td>
<td>560</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1,4-二氯苯</td>
<td>1.5×10^3</td>
<td>20</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>乙苯</td>
<td>1.2×10^3</td>
<td>28</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>苯乙烯</td>
<td>1.1×10^3</td>
<td>1290</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>甲苯</td>
<td>1.3×10^3</td>
<td>1200</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>对、间二甲苯</td>
<td>1.2×10^3</td>
<td>570</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>邻二甲苯</td>
<td>1.2×10^3</td>
<td>640</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>半挥发性有机物</td>
<td>硝基苯</td>
<td>0.09L</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>苯胺</td>
<td>0.02L</td>
<td>260</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>2-氯苯酚</td>
<td>0.06L</td>
<td>2256</td>
<td>达标</td>
</tr>
</tbody>
</table>
根据表 3-7 可知，项目地块内各土壤监测点所有监测因子的评价指数均小于 1，满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地风险筛选值，本项目所在区域土壤本底环境状况良好。

3.1.6 生态环境

本项目位于重庆市高新区走马镇大石村，项目所在地及评价范围内不涉及国家公园、自然保护区、风景名胜区、世界文化和自然遗产地、海洋特别保护区、饮用水水源保护区等生态环境敏感区。因此，根据《建设项目环境影响报告表编制技术指南（污染影响类）》(试行)，可不开展生态现状调查。
3.2 环境保护目标

（1）大气环境

根据现场踏勘情况，本项目 500m 范围内不涉及自然保护区、风景名胜区、饮用水水源保护区、珍稀动植物资源等敏感保护目标。项目主要环境保护目标统计见表 3-8。

表3-8 外环境关系情况表

<table>
<thead>
<tr>
<th>名称</th>
<th>坐标/（以厂中心为原点）</th>
<th>保护对象</th>
<th>类别</th>
<th>相对方位</th>
<th>相对厂界距离/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>散户 1</td>
<td>-294 114</td>
<td>户，约 7 人</td>
<td>大气环境保护目标</td>
<td>西北</td>
<td>165</td>
</tr>
<tr>
<td>散户 2</td>
<td>-178 243</td>
<td>户，约 20 人</td>
<td></td>
<td>西北</td>
<td>120</td>
</tr>
<tr>
<td>散户 3</td>
<td>-66 400</td>
<td>户，约 14 人，65 人</td>
<td></td>
<td>北</td>
<td>146</td>
</tr>
<tr>
<td>散户 4</td>
<td>157 -120</td>
<td>户，约 27 户，90 人</td>
<td></td>
<td>南</td>
<td>70</td>
</tr>
<tr>
<td>散户 5</td>
<td>339 205</td>
<td>户，约 47 户，150 人</td>
<td></td>
<td>东</td>
<td>197</td>
</tr>
</tbody>
</table>

（2）声环境

项目厂界外 50 米范围内无声环境保护目标。

（3）地下水环境

项目厂界外 500 米范围内无地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源。

（4）生态环境

项目位于重庆市高新区走马镇大石村，用地性质属于环卫用地，无珍稀野生动植物存在，无自然保护区，生态环境质量良好。项目用地范围内无名树、古树等，项目用地区的生态环境现状不会构成本项目的制约因素。

3.3 污染物排放控制标准

3.3.1 大气污染物排放标准

本项目营运期厂界的油气排放浓度执行《加油站大气污染物排放标准》（GB20952-2020）中标准限值，详见表 3-9。

表 3-9 《加油站大气污染物排放标准》（GB20952-2020）

<table>
<thead>
<tr>
<th>污染物</th>
<th>无组织排放监控浓度限值</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>限值含义</td>
</tr>
<tr>
<td>非甲烷总烃</td>
<td>监控点处 1 小时平均浓度值</td>
</tr>
</tbody>
</table>

根据《加油站大气污染物排放标准》（GB 20952-2020），加油站油气回
收装置的液阻、密闭性、气液比也有相应的标准要求，具体要求详情见表 3-10。

表 3-10 《加油站大气污染物排放标准》（GB20952-2020）

<table>
<thead>
<tr>
<th>类型</th>
<th>限值</th>
<th>相关条件要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>加油站油气回收管线液阻最大压力限值</td>
<td>最大压力: 40Pa</td>
<td>通入氮气流量: 18L/min</td>
</tr>
<tr>
<td></td>
<td>最大压力: 99Pa</td>
<td>通入氮气流量: 28L/min</td>
</tr>
<tr>
<td></td>
<td>最大压力: 155Pa</td>
<td>通入氮气流量: 38L/min</td>
</tr>
<tr>
<td>加油站油气回收系统密闭性检测最小剩余压力限值</td>
<td>最小剩余压力限值: 451Pa</td>
<td>储罐油气空间: 18925L，受影响的加油枪数: 1~6</td>
</tr>
<tr>
<td>加油油气回收系统的气液比</td>
<td>1.0 ≤气液比≤ 1.2</td>
<td>符合技术评估报告给出的范围</td>
</tr>
<tr>
<td>油气处置装置的油气排放浓度 (1小时评价浓度值)</td>
<td>≤25g/m³ (标准状态)</td>
<td>排放口距地平面高度 (m) ≥4</td>
</tr>
</tbody>
</table>

3.3.2 水污染物排放标准

本项目地面冲洗废水和初期雨水经截流沟收集后，进入初期雨水收集池，再排入现有污水处理站处理达《生活垃圾填埋场污染控制标准》（GB16889-2008）对一般地区的排放要求（表 2）后进入市政管网；食堂废水经隔油池预处理后与生活污水、车辆冲洗水一起进入生活污水处理设施处理，达《污水综合排放标准》（GB8978-1996）三级标准后进入市政污水管网。

生活污水经市政污水管网排入走马乐园污水处理厂深度处理，走马田园污水处理厂属于梁滩河流域重点控制区域，走马田园污水处理厂 COD、氨氮执行《梁滩河流域城镇污水处理厂主要污染物排放标准》（DB50/963-2020），其他污染物执行《城镇污水处理厂污染物排放标准》（GB18918-2002）一级 A 标准后排入梁滩河。

标准值详见表 3-11、3-12。

表 3-11 项目污水排放标准 单位：mg/L

<table>
<thead>
<tr>
<th>序号</th>
<th>控制污染物</th>
<th>浓度限值</th>
<th>执行标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>石油类</td>
<td>20</td>
<td>《污水综合排放标准》（GB8978-1996）三级标准①</td>
</tr>
<tr>
<td>2</td>
<td>COD</td>
<td>100</td>
<td>《生活垃圾填埋场污染控制标准》（GB16889-2008）</td>
</tr>
<tr>
<td>3</td>
<td>悬浮物</td>
<td>30</td>
<td>《城镇污水处理厂污染物排放标准》（GB18918-2002）一级 A 标准</td>
</tr>
</tbody>
</table>

备注：①石油类执行《污水综合排放标准》（GB8978-1996）三级标准。
表 3-12 城镇污水处理厂污染物排放标准单位：mg/L

<table>
<thead>
<tr>
<th>标准名称</th>
<th>COD</th>
<th>SS</th>
<th>石油类</th>
</tr>
</thead>
<tbody>
<tr>
<td>《梁滩河流域城镇污水处理厂主要污染物排放标准》（DB50/963-2020）</td>
<td>30</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>《城镇污水处理厂污染物排放标准》（GB18918-2002）一级A标</td>
<td>/</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

3.3.3 噪声排放标准

根据《关于印发重庆市中心城区声环境功能区划分方案（2023年）的函》（渝环〔2023〕61号）和《声环境质量标准》（GB 3096-2008），项目所在地执行《声环境质量标准》（GB3096-2008）2类标准。具体标准值见下表。

表 3-13 工业企业厂界环境噪声排放限值 单位：dB（A）

<table>
<thead>
<tr>
<th>标准类别</th>
<th>时段</th>
<th>限值</th>
</tr>
</thead>
<tbody>
<tr>
<td>厂界外声环境功能区类别</td>
<td>昼间</td>
<td>夜间</td>
</tr>
<tr>
<td>2类</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

3.3.4 固体废物标准

项目生活垃圾实行袋装收集，由环卫部门统一清运处置。

危险废物按《国家危险废物名录》（2021版）、《危险废物鉴别标准》（GB5085.7-2019）《危险废物贮存污染控制标准》（GB18597-2023）进行识别、贮存和管理。

3.4 总量控制建议指标

废水：
排入管网总量：COD：0.0004t/a。
排入环境总量：COD：0.0001t/a。
四、主要环境影响和保护措施

<table>
<thead>
<tr>
<th>施工期环境保护措施</th>
<th>4.1 施工期环境影响分析</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>本项目在现有走马垃圾二次转运站内安装设备。项目施工期较短，不采用大型机械设备，故本次评价仅对施工期作简要分析。</td>
</tr>
<tr>
<td></td>
<td>（1）废气</td>
</tr>
<tr>
<td></td>
<td>施工期废气主要是设设备安装过程产生的粉尘，工期较短，工程量小，通过洒水降尘等措施可有效降低施工期扬尘对周边环境的影响。</td>
</tr>
<tr>
<td></td>
<td>（2）废水</td>
</tr>
<tr>
<td></td>
<td>施工期废水主要是施工人员的生活污水，依托现有生活污水处理系统处理达标后排入市政管网，对周边环境影响甚微。</td>
</tr>
<tr>
<td></td>
<td>（3）噪声</td>
</tr>
<tr>
<td></td>
<td>本项目施工期以小型机械和人工操作为主，无需大型燃油动力机械，施工机械噪声较小，且施工期短，夜间不施工，故施工期噪声对周边居民影响不大。</td>
</tr>
<tr>
<td></td>
<td>（4）固废</td>
</tr>
<tr>
<td></td>
<td>本项目在现有走马垃圾二次转运站内安装设备，项目施工期较短，不采用大型机械设备，故本次评价仅对施工期作简要分析。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>运营期环境影响和保护措施</th>
<th>4.2 废气</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.2.1 正常工况</td>
</tr>
<tr>
<td></td>
<td>（1）源强核算</td>
</tr>
<tr>
<td></td>
<td>①油罐装料蒸汽排放（大呼吸）</td>
</tr>
<tr>
<td></td>
<td>储罐大呼吸损失是指储罐进行装油时所呼出的油蒸汽而造成的油品蒸发损失。储罐进油时，由于油面逐渐升高，气体空间逐渐减小，罐内压力增大，当压力超过阻火呼吸阀控制压力时，一定浓度的油蒸汽开始从阻火呼吸阀呼出，直到油罐停止收油。</td>
</tr>
</tbody>
</table>
| | 本项目油罐进料采用淹没输油管法，根据《散装液态石油产品损耗》
（GB11085-89）中的卸车损耗计算油品损失。本项目年加油柴油 3274t。储罐废气排放情况见表 4-1

表 4-1 储罐大呼吸非甲烷总烃产排情况一览表

<table>
<thead>
<tr>
<th>产生源</th>
<th>产生源</th>
<th>油量 t/a</th>
<th>卸车损耗率/%</th>
<th>损失量 t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>油罐装料油罐车油品蒸发</td>
<td>柴油</td>
<td>3274</td>
<td>0.05</td>
<td>1.64</td>
</tr>
</tbody>
</table>

本项目采用密闭卸油油气回收系统（回收效率不低于 95%）对卸油油气进行回收，含有少量油品的空气经通气管阻火呼吸阀排放。

①储罐呼吸排放（大呼吸）

本项目采用地上卧式储油罐，整个储油及加油系统均为密闭系统，根据《散装液态石油产品损耗》（GB11085-89）中的贮存损耗率计算油品损失，本项目年加柴油 3274t。储罐废气排放情况见表 4-2

表 4-2 储罐小呼吸非甲烷总烃产排情况一览表

<table>
<thead>
<tr>
<th>产生源</th>
<th>产生源</th>
<th>油量 t/a</th>
<th>储存损耗率/%</th>
<th>损失量 t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>油罐贮存油品蒸发</td>
<td>柴油</td>
<td>3274</td>
<td>0.01</td>
<td>0.3</td>
</tr>
</tbody>
</table>

②加油枪挥发废气

车辆加油过程中排放的油气主要来自于装入油品时逐出汽车油箱内的蒸汽，被逐出的蒸汽量随汽油温度、汽车油箱温度、汽油蒸汽压力（RVP）和装油速率而变动。根据《散装液态石油产品损耗》（GB11085-89）中的零售损耗（机动车加油）计算油品损失，见表 4-3

表 4-3 加油过程油气蒸发情况一览表

<table>
<thead>
<tr>
<th>产生源</th>
<th>产生源</th>
<th>油量 t/a</th>
<th>零售损耗率/%</th>
<th>损失量 t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>加油作业蒸发</td>
<td>柴油</td>
<td>3274</td>
<td>0.08</td>
<td>2.62</td>
</tr>
</tbody>
</table>

柴油呼吸损耗产生的油气直接由通过通气立管排放，通气立管口设置阻火呼吸阀（起呼吸作用，并同时能阻燃、阻火），多余体积气体排入环境，本项目油气产排情况见下表 4-4。
表 4-4 本项目油气排放情况一览表

<table>
<thead>
<tr>
<th>产污环节</th>
<th>产生源</th>
<th>产生量 t/a</th>
<th>处理措施</th>
<th>回收量 t/a</th>
<th>排放量 t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>储罐卸车挥发-大呼吸</td>
<td>柴油罐</td>
<td>1.64</td>
<td>卸油油气回收系统，油气回收率为 95%</td>
<td>1.56</td>
<td>0.08</td>
</tr>
<tr>
<td>储罐贮存挥发-小呼吸</td>
<td>柴油罐</td>
<td>0.33</td>
<td></td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>加油作业</td>
<td>加油枪</td>
<td>2.62</td>
<td></td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>合计</td>
<td></td>
<td>3.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（2）建设项目废气污染物排放信息

表 4-5 废气污染物产排情况一览表

<table>
<thead>
<tr>
<th>生产设施</th>
<th>产污环节</th>
<th>污染物种类</th>
<th>产生量 (t/a)</th>
<th>排放形式</th>
<th>治理措施/治理工艺</th>
<th>排放浓度 (mg/m³)</th>
<th>排放量 (t/a)</th>
<th>执行标准</th>
</tr>
</thead>
</table>
| 储油罐 | 储罐挥发-卸车 | NMHC | 1.64 | 无组织 | 卸油油气回收系统，采用油气平衡工艺，油气回收率为 95% | / | 0.08 | 《加油站大气污染物排放标准》 (GB20952-2020)；
| | 储罐挥发-贮存 | NMHC | 0.33 | 无组织 | / | / | 0.33 | |
| 加油枪 | 加油枪挥发 | NMHC | 2.62 | 无组织 | / | / | 2.62 | |

（3）排放口基本信息

油气挥发废气通过 2 根 4.8m 高通气管引至装置顶部排放。

4.2.2 大气污染防治措施

本项目设置卸油油气回收系统。

卸油油气回收系统：即一次油气回收系统，是通过压力平衡原理，将卸油过程中挥发的油气收集至油罐车内，运回储油库进行油气回收处理的过程。在油罐车卸油过程中，油罐车内压力减小，储油罐内压力增大，储油罐与油罐车内的压差使卸油过程中挥发的油气通过管线回到油罐车内，达到油气收集的目的。待卸油结束，储油罐与油罐车内压力达到平衡状态，一次油气回收阶段结束，此过程可回收约 95% 油气，其余 5% 通过通气立管排入环境。
卸油油气回收系统均为密闭收集，通气立管排气口设置在撬装加油设备顶部，通气管顶部设置防火呼吸阀。上述油气回收措施均为《排污许可证申请与核发技术规范 储油库、加油站》(HJ1118-2020)中推荐治理措施，可有效减少挥发油气(以非甲烷总烃计)的排放。项目厂界非甲烷总烃无组织排放浓度能够满足《加油站大气污染物排放标准》(GB20952-2020)限值要求，实现达标排放。

4.2.3 非正常工况污染物排放情况

本项目非正常工况废气污染物排放情况详见表4-6所示。

表 4-6 非正常工况大气污染物排放量核算表

<table>
<thead>
<tr>
<th>序号</th>
<th>污染源</th>
<th>非正常排放原因</th>
<th>污染物</th>
<th>非正常排放浓度(mg/m³)</th>
<th>非正常排放速率(kg/h)</th>
<th>单次持续时间(h)</th>
<th>次频次/次</th>
<th>应对措施</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>汽油储罐卸车</td>
<td>卸车油气回收系统故障</td>
<td>非甲烷总烃</td>
<td>/</td>
<td>/</td>
<td>1</td>
<td>小概率</td>
<td>卸油完后后对卸车油气回收系统进行检修</td>
</tr>
</tbody>
</table>

4.2.4 大气环境影响分析

本项目所在地属于环境空气二类区，现状监测点处特征污染因子均满足相关空气标准要求。项目周边 500m 范围内环境保护目标主要为散户，无自然保护区、风景名胜区、森林公园等需要特殊保护的区域。

本项目废气经油气回收系统处理后能实现达标排放，对外环境影响小。

4.2.5 监测要求

根据《排污许可证申请与核发技术规范 储油库、加油站》(HJ1118-2020)，本项目运营期废气监测计划详见表4-7。

表 4-7 废气环境监测计划表

<table>
<thead>
<tr>
<th>排放口编号/监测点位</th>
<th>监测因子</th>
<th>监测频率</th>
<th>执行标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>站区边界</td>
<td>非甲烷总烃</td>
<td>1次/年</td>
<td></td>
</tr>
<tr>
<td>油气回收系统*</td>
<td>气液比、液阻、密闭性</td>
<td>1次/年</td>
<td>《加油站大气污染物排放标准》(GB20952-2020)</td>
</tr>
<tr>
<td>加油站油气回收系统密闭点</td>
<td>泄露检测值</td>
<td>1次/年</td>
<td></td>
</tr>
</tbody>
</table>

备注：*气液比和液阻是加油油气回收系统（本项目不涉及二次油气回收）；密闭性是卸油油气回收系统（一次油气回收）。
4.3 废水
4.3.1 废水主要污染物排污分析

（1）废水源强分析

①地面冲洗废水

本项目地面冲洗区域主要为撬装加油设备区域地面。清洗面积约 20m²，3天清洗一次，则地面冲洗日最大用水量约 0.04m³/d（4.88m³/a）。地面冲洗废水平均排放系数为 0.9，则地面冲洗废水日最大产生量为 0.036m³/d（4.39m³/a）。地面冲洗废水污染物主要为 COD、SS、石油类，其初始浓度分别为 300mg/L、400mg/L、20mg/L。

②初期雨水

根据《关于发布重庆市暴雨强度修订公式及设计暴雨雨型的通知》（渝建〔2017〕443号）可知，暴雨强度计算公式：

\[q = \frac{1132(1 + 0.958lg P)}{(t + 5.408)^{0.993}} \]

式中：q—暴雨强度（升/秒·公顷）；
P—设计重现期（年），取值见《室外排水设计规范》（GB50014-2006（2016年版）），评价取 3年；
t—降雨历时（min），本评价取 15min。

根据上式，计算出本项目区域暴雨强度 q 为 274L/s·hm²，
雨水汇水量采用《室外排水设计规范》（GB50014-2006（2016年版））计算公式计算项目区域初期雨水：

\[Q = \psi \cdot q \cdot F \]

式中：Q——雨水流量，L/s；
\(\psi\)——径流系数，本项目为混凝土路面，取值为 0.85~0.95，本评价取中间值 0.9；
q——设计暴雨强度，L/s·hm²；
F——汇水面积，hm²。

汇水面积按加油站加油及卸油区域计，则汇水面积约 0.008hm²，暴雨持续
时间按照15min计。计算出雨水流量为1.97L/s，15min初期雨水量约1.773m³/次，项目初期雨水收集池有效容积为291.2m³，富裕容积为183.2m³，能容纳本项目初期雨水量。

项目撬装加油装置周围新建截流沟，地面冲洗废水和初期雨水收集后排入初期雨水收集池，再排入污水处理站。

<table>
<thead>
<tr>
<th>废水类别</th>
<th>污染物</th>
<th>产生浓度（mg/L）</th>
<th>产生量（t/a）</th>
<th>排入市政管网浓度（mg/L）</th>
<th>排入市政管网排放量（t/a）</th>
<th>排入环境浓度（mg/L）</th>
<th>排入环境排放量（t/a）</th>
</tr>
</thead>
<tbody>
<tr>
<td>地面冲洗废水</td>
<td>COD</td>
<td>300</td>
<td>0.001</td>
<td>100</td>
<td>0.0004</td>
<td>30</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>400</td>
<td>0.002</td>
<td>30</td>
<td>0.0001</td>
<td>10</td>
<td>0.00004</td>
</tr>
<tr>
<td></td>
<td>石油类</td>
<td>20</td>
<td>0.00009</td>
<td>20</td>
<td>0.00009</td>
<td>1</td>
<td>0.00004</td>
</tr>
</tbody>
</table>

（2）建设项目污染物排放信息

①废水类别、污染物及污染治理设施信息

<table>
<thead>
<tr>
<th>废水类别</th>
<th>污染物种类</th>
<th>排放去向</th>
<th>排放规律</th>
<th>污染物治理设施</th>
<th>排放口编号</th>
<th>排放口设置是否符合</th>
<th>排放口类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>地面冲洗废水</td>
<td>COD、SS、石油类</td>
<td>走马乐园污水处理厂</td>
<td>间断</td>
<td>污水处理站</td>
<td>DW002</td>
<td>是</td>
<td>污水处理站排放口</td>
</tr>
</tbody>
</table>

②废水间接排放口基本情况

<table>
<thead>
<tr>
<th>排放口编号</th>
<th>排放口地理坐标</th>
<th>废水排放量</th>
<th>排放去向</th>
<th>排放规律</th>
<th>受纳污水处理厂信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>经度</td>
<td>纬度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>排放口编号</td>
<td>污染物种类</td>
<td>浓度限值 (mg/L)</td>
<td>年排放量 t/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DW002</td>
<td>COD</td>
<td>20</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>30</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>石油类</td>
<td>20</td>
<td>0.00009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3.2 废水治理设施依托可行性分析

（1）废水依托现有初期雨水收集池、污水处理站可行性分析

本项目地表冲洗废水和初期雨水经截流沟收集后和初期雨水一起排入初期雨水收集池，有效容积为 291.2m³，初期雨水和地表冲洗废水最大产生量为 1.809m³，初期雨水收集池处理能力能满足要求。初期雨水及地表冲洗废水经初期雨水收集池后排入现有污水处理站（处理能力 350m³/d）处理，污水处理站目前富裕处理能力 200m³/d，有足够余量接纳本项目废水。污水处理站废水采用预处理系统（包括：调节池+隔油沉淀池+气浮设备）处理后经“厌氧+MBR（外置式膜生化反应器）+两级 Fenton 氧化+两级曝气生物滤池”工艺。

初期雨水和地表冲洗废水 COD、SS 处理达《生活垃圾填埋场污染控制标准》（GB16889-2008），石油类处理达《污水综合排放标准》（GB8978-1996）三级标准后排入市政污水管网，进入走马乐园污水处理厂处理达标后排入梁滩河。

（2）废水依托走马乐园污水处理厂可行性分析
走马乐园污水处理厂主要服务于走马镇及其规划区外部分小区，服务人口约 5 万人。本项目位于重庆市高新区走马镇大石村，属于走马镇，在走马乐园污水处理厂服务范围内。项目地块高程比走马乐园污水处理厂低，在厂区设置一次提升泵，设置 2 台潜污泵，建设污水管线长度约为 1460m，管径为 DN150 的内外涂塑复合钢管，于 K1+1460 处接入走马镇市政污水管网，将厂区内的污废水排入走马镇污水处理厂处理。排水管线沿进场道路地面敷设，不涉及防爆井等。

走马乐园污水处理厂位于重庆市九龙坡区走马镇乐园村 8 社，厂区占地面积为 6740.06m²。于 2018 年 12 月完成扩建，处理规模 4500m³/d，采用“CASS”处理工艺。走马乐园污水处理厂属梁滩河流域重点控制区域，走马乐园污水处理厂 COD、氨氮执行《梁滩河流域城镇污水处理厂主要污染物排放标准》(DB50/963-2020)，其他污染物执行《城镇污水处理厂污染物排放标准》(GB18918-2002) 一级 A 标准后排入梁滩河。

本项目废水水质简单，废水最大日排放量 0.036m³/d，项目建成后全站最大日排放量为 150.036m³/d，产生量较少，不会对污水处理厂造成冲击，能够满足项目废水处理需求。

因此，项目在采取上述废水处理措施后，满足相关环保要求，因此项目建设对水环境影响很小。

4.3.3 监测要求

根据《排污许可证申请与核发技术规范 储油库、加油站》(HJ 1118-2020)、《排污单位自行监测技术指南 储油库、加油站》(HJ 1249—2022)，项目废水环境监测计划见下表。
表 4-13 废水环境监测计划表

<table>
<thead>
<tr>
<th>序号</th>
<th>排放口编号/监测点位</th>
<th>排放口名称/监测点位名称</th>
<th>点数</th>
<th>监测因子</th>
<th>监测频率</th>
<th>执行标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DW002</td>
<td>污水处理站排放口</td>
<td>1</td>
<td>COD</td>
<td>1次/季度</td>
<td>《生活垃圾填埋场污染控制标准》（GB16889-2008）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SS</td>
<td>1次/半年</td>
<td>《污水综合排放标准》（GB8978-1996）三级标准</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>石油类</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4 噪声

4.4.1 噪声源强

本项目运营期噪声源主要为潜油泵等设备运行时产生的设备噪声以及加油车辆在进出加油站时产生的交通噪声。噪声值在70~80dB(A)之间。项目主要通过采取基础减振、距离衰减等降噪措施。本项目噪声污染源源强核算结果见下表4-14。

由于本项目属于扩建项目，本项目影响值将叠加现状厂界噪声值。

表4-14 工业企业噪声源强调查清单（室外声源）

<table>
<thead>
<tr>
<th>序号</th>
<th>声源名称</th>
<th>空间相对位置/m</th>
<th>(声压级/距声源距离)/(dB(A)/m)</th>
<th>声源控制措施</th>
<th>运行时段</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>加油机</td>
<td>X:42.9</td>
<td>Y:-114.9</td>
<td>Z:1.2</td>
<td>70/1</td>
</tr>
<tr>
<td>2</td>
<td>潜油泵</td>
<td>X:-47.6</td>
<td>Y:-124.5</td>
<td>Z:1.2</td>
<td>80/1</td>
</tr>
</tbody>
</table>

表中坐标以厂界中心（106.292724，29.470899）为坐标原点，正东向为X轴正方向，正北向为Y轴正方向。
4.4.2 预测方法

（1）室外声源在预测点产生的声级计算

采用《环境影响评价技术导则 声环境》(HJ2.4-2021)中推荐的室外声源计算方法的点声源的几何发散衰减公式。根据A.3.1.3 面声源的几何发散衰减的判定“当 $r > \frac{b}{\pi}$ 时，距离加倍衰减趋近于 6dB，类似点声源的衰减特性。”根据厂界距离计算，本项目 $r > \frac{b}{\pi}$，因此使用室外点声源衰减公式合理。对于工业企业稳态机械设备，当声源处于自由空间且仅考虑声源的几何发散衰减，则距离点声源 r 处的声压级为:

$$L_p(r) = L_p(r_0) - 20\log \left(\frac{r}{r_0} \right)$$

式中：
- $L_p(r)$ —— 预测点处声压级，dB；
- $L_p(r_0)$ —— 参考位置 r_0 处的声压级，dB；
- r —— 预测点距声源的距离，m；
- r_0 —— 参考位置距声源的距离，m。

（2）预测点贡献值计算

本项目声源对预测点产生的贡献值(L_{eqg})计算公式如下:

$$L_{eqg} = 10\log \left[\frac{1}{T} \left(\sum_{i=1}^{N} t_i 10^{0.1L_{Ai}} + \sum_{j=1}^{M} t_j 10^{0.1L_{Aj}} \right) \right]$$

式中：
- L_{eqg} —— 建设项目声源在预测点产生的噪声贡献值，dB；
- L_{Ai} —— 第 i 个室外声源在预测点产生的 A 声级，dB；
- L_{Aj} —— 第 j 个等效室外声源在预测点产生的 A 声级，dB；
- T —— 用于计算等效声级的时间，s；
- N —— 室外声源个数；
- t_i —— 在 T 时间内 i 声源工作时间，s；
- M —— 等效室外声源个数；
- t_j —— 在 T 时间内 j 声源工作时间，s。

（3）噪声预测值

预测点的贡献值和背景值按能量叠加方法计算得到的声级。

噪声预测值 (L_{eq}) 计算公式为:
式中：

\[L_{eq} = 10 \log \left(10^{0.1L_{eqg}} + 10^{0.1L_{eqb}} \right) \]

- \(L_{eq} \) - 预测点的噪声预测值，dB；
- \(L_{eqg} \) - 建设项目声源在预测点产生的噪声贡献值，dB；
- \(L_{eqb} \) - 预测点的背景噪声值，dB。

4.4.3 噪声预测结果

项目建成后，将对现有项目噪声贡献值进行叠加，对全站进行预测。现有项目噪声贡献值引用《走马垃圾二次转运站项目竣工环境保护验收监测报告》（报告编号：开创环（检）字[2021]第YS235号）的数据。根据项目建设内容及《环境影响评价技术导则—声环境》(HJ2.4-2021)的要求，项目环评采用的模型为《环境影响评价技术导则 声环境》(HJ2.4.2021)附录A（规范性附录）户外声传播的衰减和附录B（规范性附录）中“B.1 工业噪声预测计算模型”。项目厂界噪声预测结果与达标分析见表4-15。

表 4-15 本项目各厂界噪声预测结果 单位：dB（A）

<table>
<thead>
<tr>
<th>序号</th>
<th>预测方位</th>
<th>时段</th>
<th>扩建项目贡献值</th>
<th>现有项目贡献值</th>
<th>预测值</th>
<th>标准限值</th>
<th>达标情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>东厂界</td>
<td>昼间</td>
<td>18.5</td>
<td>56</td>
<td>56</td>
<td>60</td>
<td>达标</td>
</tr>
<tr>
<td>2</td>
<td>南厂界</td>
<td>昼间</td>
<td>30.3</td>
<td>55</td>
<td>55.01</td>
<td>60</td>
<td>达标</td>
</tr>
<tr>
<td>3</td>
<td>西厂界</td>
<td>昼间</td>
<td>28.5</td>
<td>57</td>
<td>57.01</td>
<td>60</td>
<td>达标</td>
</tr>
<tr>
<td>4</td>
<td>北厂界</td>
<td>昼间</td>
<td>4.7</td>
<td>56</td>
<td>56</td>
<td>60</td>
<td>达标</td>
</tr>
</tbody>
</table>

备注：本加油站夜间不运行。

由表4.4-2可知，本项目建成后厂界昼间噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准。同时，项目周边50m范围内无声环境敏感保护目标，因此，项目生产过程产生的噪声对周边声环境影响较小。

4.4.4 噪声防治措施

①在站场进、出口处设置减速和禁鸣标志，加强进站车辆的管理，防止对周边环境造成影响。

②潜油泵、加油机等设备采取基础减震，加强维护和保养，避免因设备问题而引发突发性高噪声造成扰民影响。

4.4.5 监测要求

根据《排污单位自行监测技术指南总则》(HJ819-2017)和本项目情况，
确定本项目噪声的日常监测要求，见下表所示。

<table>
<thead>
<tr>
<th>污染源</th>
<th>监测点位</th>
<th>监测项目</th>
<th>自行监测频次</th>
<th>验收监测频次</th>
</tr>
</thead>
<tbody>
<tr>
<td>加油设备</td>
<td>东、南、西、北侧厂界外1m处</td>
<td>等效连续A声级</td>
<td>1次/季度</td>
<td>验收时监测一次</td>
</tr>
</tbody>
</table>

4.5 固体废物

4.5.1 固体废物产生环节、产生量及处置方式

本项目固体废物主要分为：危险废物。

（1）设备检修废物：加油机、管道等设备平均每年检修一次，检修废物由含油废水、含油废渣、伴生污染物、清洗废液构成。清洗废液由于含油类物质浓度较高，现场无法进行处理或回用，与其余检修废物一并作为危险废物进行处理。根据项目实际运行情况，本项目加油机等设备检修废物产生量约0.2t/a，分类暂存于危险废物贮存点内，定期委托有相应资质单位进行处置。

（2）清罐废物：储油罐清罐过程中（每5年一次）中产生的清罐废物主要由含油废水和清洗废液组成。清洗废液中含油类物质浓度较高，现场无法进行处理或回用，与清罐废渣一并作为危险废物处置。本项目清罐废物产生量约0.5t/次•罐，项目共设2个储油罐，清罐废物合计1.0t/次•5年，平均0.2t/a。

（3）废弃的含油抹布：本项目劳保过程中产生的沾染含油抹布产生量为0.01t/a，收集后定期委托有相应资质单位进行处置。

本项目固体废物污染源强核算结果及相关参数一览表见下表4-17。

<table>
<thead>
<tr>
<th>序号</th>
<th>危险废物名称</th>
<th>危险废物类别</th>
<th>危险废物代码</th>
<th>产生量t/a</th>
<th>产生工序及装置</th>
<th>形态</th>
<th>主要成分</th>
<th>有害成分</th>
<th>产废周期</th>
<th>危险特性</th>
<th>污染防治措施</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>设备检修废物</td>
<td>HW09</td>
<td>900-007-09</td>
<td>0.2</td>
<td>加油机、管道设备检修</td>
<td>液、固</td>
<td>矿物油</td>
<td>矿物油</td>
<td>1年</td>
<td>T</td>
<td>暂存于危险废物贮存点，委托有相应资质单位进行处理</td>
</tr>
<tr>
<td>2</td>
<td>清罐废物</td>
<td>HW08</td>
<td>900-249-08</td>
<td>0.2</td>
<td>油罐清洗</td>
<td>液、固</td>
<td>矿物油</td>
<td>矿物油</td>
<td>5年</td>
<td>T/I</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>废弃</td>
<td>HW49</td>
<td>900-041-49</td>
<td>0.01</td>
<td>设备</td>
<td>固</td>
<td>矿物</td>
<td>矿物</td>
<td>半年</td>
<td>T/I</td>
<td></td>
</tr>
</tbody>
</table>

68
的含油抹布
维护
油、棉纱
油

项目固体废物处理情况详见表 4-18。

表 4-18 项目固体废物产生、治理和排放情况

<table>
<thead>
<tr>
<th>固体废物种类</th>
<th>性质</th>
<th>产生量 (t/a)</th>
<th>处置方式</th>
<th>排放量 (t/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>设备检修废物</td>
<td>HW09 类危险废物</td>
<td>0.2</td>
<td>交由危废处理单位</td>
<td>0.2</td>
</tr>
<tr>
<td>清罐废物</td>
<td>HW08 类危险废物</td>
<td>0.2</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>废弃的含油抹布</td>
<td>HW49 类危险废物</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
</tbody>
</table>

综上，本项目产生的固体废物妥善处置后，对环境不会造成二次污染。

4.5.2 固体废物防治措施及环境管理要求

危险废物收集后，暂存在走马垃圾二次转运站机修车间内危险废物暂存间（面积 20m²），定期送危废资质单位处理。危险废物危废存放场所的设置必须按照《危险废物贮存污染控制标准》（GB18597-2023）要求设置，严禁露天堆放，利用专门的防渗漏容器收集，满足“防风、防雨、防晒、防渗、防漏、防腐”措施。危险废物收集后，交由资质单位处理。

项目危险废物贮存场所（设施）基本情况表见下表。

表 4-19 项目危险废物贮存场所（设施）基本情况表

<table>
<thead>
<tr>
<th>贮存场所（设施）名称</th>
<th>危险废物名称</th>
<th>危险废物类别</th>
<th>危险废物代码</th>
<th>占地面积 (m²)</th>
<th>贮存方式</th>
<th>贮存能力</th>
<th>贮存周期</th>
</tr>
</thead>
<tbody>
<tr>
<td>危废暂存间</td>
<td>设备检修废物</td>
<td>HW09</td>
<td>900-007-09</td>
<td></td>
<td>桶装</td>
<td>0.2</td>
<td>1年</td>
</tr>
<tr>
<td></td>
<td>清罐废物</td>
<td>HW08</td>
<td>900-249-08</td>
<td>20m²</td>
<td>桶装</td>
<td>0.2</td>
<td>1年</td>
</tr>
<tr>
<td></td>
<td>废弃的含油抹布</td>
<td>HW49</td>
<td>900-041-49</td>
<td></td>
<td>桶装</td>
<td>0.01</td>
<td>1年</td>
</tr>
</tbody>
</table>

危险废物采用合适的相容容器存放；贮存区内须有泄露液体收集装置，并配备相容的吸附材料等应急物资；盛装危险废物的容器上必须粘贴符合标准的标签，危险废物堆放点设置警示标识。

项目危废日常管理，必须定期对所贮存的危险废物包装配容器及贮存设施进行检查，发现破损，应及时采取措施清理更换；须做好危险废物情况的记录，记录上须注明危险废物的名称、来源、数量、特性和包装容器的类别、入库日期、存放位置、废物出库日期及接收单位名称；严禁将危险废物混入非危险废物中贮存；指定专人进行日常管理。危废定期交由资质单位派专业技术人员和
专用运输车辆进行运输，危废转移应按照《危险废物转移管理办法》（生态环境部公安部 交通运输部部令第 23 号）相关规定对危险废物进行登记、交接和转移的管理。

4.6 “三本账”分析

本项目扩建完成后全站污染物排放“三本账”情况详见下表。

<table>
<thead>
<tr>
<th>污染物类别及名称</th>
<th>污染物因子</th>
<th>现有工程排放量</th>
<th>本项目排放量</th>
<th>以新带老削减量</th>
<th>本项目建成后全站排放量</th>
<th>变化量</th>
</tr>
</thead>
<tbody>
<tr>
<td>废气</td>
<td>H<SUB>2</SUB>S</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
<td>0.059</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NH<SUB>3</SUB></td>
<td>2.297</td>
<td>0</td>
<td>2.297</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SO<SUB>2</SUB></td>
<td>0.032</td>
<td>0</td>
<td>0.032</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NO<SUB>X</SUB></td>
<td>0.167</td>
<td>0</td>
<td>0.167</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>颗粒物</td>
<td>1.547</td>
<td>0</td>
<td>1.547</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>非甲烷总烃</td>
<td>0.001</td>
<td>0</td>
<td>0.001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>废水</td>
<td>COD</td>
<td>5.667</td>
<td>0.0001</td>
<td>0</td>
<td>5.667</td>
<td>+0.0001</td>
</tr>
<tr>
<td></td>
<td>BOD<sub>s</sub></td>
<td>1.133</td>
<td>0</td>
<td>1.133</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>1.113</td>
<td>0.00004</td>
<td>1.11304</td>
<td>+0.00004</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NH<sub>3</sub>-N</td>
<td>0.567</td>
<td>0</td>
<td>0.567</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>1.699</td>
<td>0</td>
<td>1.699</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>0.057</td>
<td>0</td>
<td>0.057</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>动植物油</td>
<td>0.113</td>
<td>0</td>
<td>0.113</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>石油类</td>
<td>0.113</td>
<td>0.000004</td>
<td>0</td>
<td>0.113004</td>
<td>+0.000004</td>
</tr>
<tr>
<td>固废</td>
<td>废金属</td>
<td>5475</td>
<td>0</td>
<td>5475</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>废 MBR 膜</td>
<td>0.17</td>
<td>0</td>
<td>0.17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>初效过滤废渣</td>
<td>0.01</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>纸浆、塑料材料等非金属</td>
<td>5840</td>
<td>0</td>
<td>5840</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>除臭净化填料</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>废活性炭</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>废机油</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>废棉纱和手套</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>污水处理站污泥</td>
<td>5000</td>
<td>0</td>
<td>5000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>生活垃圾</td>
<td>29.2</td>
<td>0</td>
<td>29.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>设备检修废物</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>+0.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>清罐废物</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>+0.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>废弃的含油抹布</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>+0.01</td>
<td>0</td>
</tr>
</tbody>
</table>

4.7 地下水、土壤影响分析及其防治措施

1. 影响分析
项目所用的撬装加油装置罐体外部进行了喷砂抛丸处理，喷涂有环氧富锌防锈底漆一环氧富锌中漆一聚胺酯面漆，工艺管线用工业调和漆油饰，撬座部分喷涂黑黄色警示标志防锈漆，具有一定防渗效果；罐体周边将建设0.6m高的防渗围堰，加油装置配备一次油气回收系统，加、卸油过程中不小心洒漏的油品通过吸油毡布处理，建设单位要求加油工人严格按照规程作业，对区域地下水和土壤环境基本无污染途径。因此，项目建设对区域地下水、土壤环境影响较小。

2、分区防治措施

根据物料或者污染物泄漏的途径和生产功能单元所处的位置，将厂区可划为非污染防治区、一般污染防治区和重点污染防治区。

（1）非污染防治区

没有物料或污染区泄漏，不会对地下水环境造成污染的区域或部位。

（2）一般污染防治区

裸露于地面的生产功能单元，污染地下水环境的物料或污染物泄漏后，可及时发现和处理的区域或部位。

（3）重点污染防治区

位于地下或半地下的生产功能单元，污染地下水、土壤环境的物料或污染物泄漏后，不易及时发现和处理的区域或部位。

根据以上原则，本项目污染防治分区详见下表。

表4-21 项目污染区划分与防渗等级一览表

<table>
<thead>
<tr>
<th>分区</th>
<th>防渗区域及部位</th>
<th>防渗技术要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>非污染区</td>
<td>简单防渗</td>
<td>消防沙池</td>
</tr>
<tr>
<td>重点污染区</td>
<td>重点防渗</td>
<td>拆装加油装置地面基础、危废暂存间、围堤等效黏土防渗层Mb≥6.0m，渗透系数K≤1×10^{-7}cm/s</td>
</tr>
</tbody>
</table>

3、建立地下水环境监测管理体系

包括制定地下水环境影响跟踪监测计划、建立地下水环境影响跟踪监测制度等。按照《加油站地下水污染防治技术指南（试行）》（环办水体函〔2017〕323号）相关规定，应设置1个地下水监测井，地下水监测井应设在油罐地下水流向的下游，在保证安全的情况下，尽可能靠近油罐。地下水监测井结构采用
一孔成井工艺。设计需结合当地水文地质条件，并充分考虑区域10年内地下水位变幅，滤水管长度和设置位置应覆盖水位变幅。监测井设置的其他要求可参照《场地环境监测技术导则》（HJ/T25.2）执行。

建设单位应制定地下水污染响应应急预案，明确油品发生泄漏情况下应采取的污染源控制措施及切断污染途径的措施。若发现油品泄漏，需启动环境预警和开展应急响应。应急响应措施主要有泄漏加油站停运、油品阻隔和泄漏油品回收。在1天内向环境保护主管部门报告，在5个工作日内提供泄漏加油站的初始环境报告，包括责任人的名称和电话号码，泄漏物的类型、体积和地下水污染物浓度，采取应急响应措施。

4. 地下水跟踪监测要求

根据《加油站地下水污染防治技术指南（试行）》（环办水体函〔2017〕323号），制定地下水跟踪监测计划。

表4-22 地下水跟踪监测计划一览表

<table>
<thead>
<tr>
<th>监测点位</th>
<th>监测因子</th>
<th>监测频次</th>
<th>执行标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>油罐区下游地下水监测井（E106.51397333，N29.44854938）</td>
<td>石油类、萘、苯、甲苯、乙苯、邻二甲苯、间（对）二甲苯、甲基叔丁基醚</td>
<td>1次/季度</td>
<td>《地下水质量标准》（GB/T14848-2017） III类标准</td>
</tr>
</tbody>
</table>

注：①石油类执行《地表水环境质量标准》（GB3838-2002）中III类标准

4.8 环境风险

4.8.1 环境风险识别

（1）环境风险物质识别

按照《建设项目环境风险评价技术导则》（HJ169-2018）附录B，本项目所涉及的风险物质为柴油。本项目环境风险物质情况详见下表。

表4-23 企业环境风险物质识别

<table>
<thead>
<tr>
<th>序号</th>
<th>物质名称</th>
<th>类别</th>
<th>危险特性</th>
<th>最大存在总量q/t</th>
<th>风险物质分布</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>柴油</td>
<td>GB3.3类高闪点易燃液体</td>
<td>燃烧、爆炸性</td>
<td>37.5</td>
<td>加油区、储罐区、卸油区</td>
</tr>
</tbody>
</table>

（2）风险潜势初判

根据《建设项目环境风险评价技术导则》（HJ169-2018）附录B识别出本项目主要风险物质为真空泵油、柴油和液态危险废物。
根据《建设项目环境风险评价技术导则》（HJ169-2018）附录C计算危险物质数量与临界量比值（Q）。

计算公式如下：

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \ldots + \frac{q_n}{Q_n}$$

式中：
- q_1，q_2……q_n 为每种危险物质实际存在量，t；
- Q_1，Q_2……Q_n 为每种危险物质的临界量，t。

当$Q<1$时，该项目的环境风险潜势为I。

当$Q\geq 1$时，将Q值划分为：
1. $1 \leq Q < 10$；
2. $10 \leq Q < 100$；
3. $Q \geq 100$。计算结果见下表。

表4-24 Q值统计分析一览表

<table>
<thead>
<tr>
<th>序号</th>
<th>物质名称</th>
<th>厂区最大储存量</th>
<th>临界量</th>
<th>q_n/Q_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>柴油</td>
<td>37.5t</td>
<td>2500t</td>
<td>0.015</td>
</tr>
</tbody>
</table>

由表4-22可知，扩建项目 $Q=0.015<1$，本项目的环境风险潜势为I，表明其环境风险较小。

4.8.2 环境风险影响途径

项目突发环境风险事故主要是柴油在储存、使用过程中发生泄漏、火灾等，泄漏进入水环境、土壤环境，火灾将产生对人体有害的黑烟、CO和NOx等，对大气环境产生一定影响。

4.8.3 环境风险影响分析

1）大气环境影响分析

柴油储油罐为密闭设计，只有一个排气孔通向地面，且设置防渗检测系统。即使油品泄漏后，通过排气孔流向地面的油品量也很小，油品挥发产生的废气量较小，对环境空气造成的影响较小。

当撬装加油装置发生火灾或者爆炸时，油品燃烧时将产生烟尘、CO、NOx等污染物，会影响大气环境，可能引起火灾爆炸区域局部范围CO浓度超标，但项目所在区域地形开阔，火灾或者爆炸产生的烟尘、CO、NOx等通过空气快速扩散至周边区域，不会造成人群窒息事件的发生，不会因CO中毒而产生环境风险事故，其环境风险处于可接受范围内。

撬装加油装置区域设置消防设施（如灭火器、灭火毯、消防沙）等，发生
火灾时可迅速使用消防设施扑灭火源；同时疏散走马垃圾二次转运站内及周边人群，向上风向撤离；绘制加油站应急疏散路线图，加强突发环境事件应急预案演练，增强员工应对突发环境事件的应急处理能力。

2) 地表水影响分析

本项目泄漏或渗漏的油品若进入地表河流，会造成地表河流的污染。油品进入河流后，由于有机物烃类物质难溶于水，大部分上浮在水层表面，首先造成对河流的景观破坏，产生严重的刺鼻气味；其次油膜使空气与水隔离，造成水中溶解氧浓度降低，逐渐形成死水，致使水中生物死亡；再次，燃料油的主要成分是 C4~C9 的烃类、芳烃类、醇酮类以及卤代烃类有机物，一旦进入水环境，由于可生化性差，可能造成被污染水体长时间得不到净化。

本项目采用双层钢制油罐，油罐内设有高液位自动报警系统，发生风险泄漏事故可能性较小，且本项目与地表水体之间距离较远，有建筑物等阻隔，泄漏的油品进入地表水体的可能性极小。本项目发生少量泄漏时可用砂土、蛭石或其它惰性材料吸收；发生大量泄漏时可采用防爆泵转移至槽车或专用收集器内，回收或交由具有废油处置能力和危险废物经营资质的单位进行妥善处置，防止泄露油品直接进入雨水管网。若发生火灾爆炸事故，产生的消防废水经过截流沟收集至隔油池中，并采取有效控制措施，防止消防废水直接进入雨水管网。

因此，评价认为油品泄漏风险事故造成地表水污染影响的可能性很小，做好相应的防范措施后，对地表水环境影响小。

3) 土壤环境影响分析

油品渗漏进入土壤层后，使土壤层中吸附大量的燃料油，在土壤团粒中形成膜网结构，环境中的空气难以进入土壤颗粒中，从而造成植物生物的死亡。为防止油品泄漏对土壤造成污染，本项目采用双层钢制油罐，且对油罐周边场地进行硬化处理，输油管沟基底进行防渗处理，预计油料泄漏对土壤造成污染风险的可能性较小。

4) 地下水环境影响分析

地下水一旦遭到油品污染，可使地下水产生严重异味，并有较强的致畸致癌性。
根据分析，本项目油罐罐基及工艺管线管沟均进行相应防渗处理，发生油品渗漏污染地下水的风险事故概率较低。为减少油品渗漏造成地下水污染的可能性，加油站输油管沟及输油管道需坡向储油罐，且输油管沟基础及周壁均进行防渗处理，防止油品泄漏进入外环境中。

5）次生环境影响分析

油品发生泄漏后可能会引起爆炸事故，当加油站发生火灾或爆炸时，油品燃烧将产生 CO、氮氧化物等污染物，火灾爆炸事故危害除热辐射、冲击波等直接危害外，燃烧物质在不完全燃烧过程中产生的伴生或次生有害物质 CO，在高温下迅速挥发释放至大气中，造成爆炸区域局部范围 CO 浓度超标，可能引起 CO 中毒。项目所在区域地形开阔，周边 50m 范围内有无环境敏感目标，火灾或者爆炸产生的 CO、氮氧化物等通过空气快速扩散至周边区域，造成人群窒息事件的可能性较小，其环境风险处于可接受范围内。

综上，一般情况下储油罐发生泄漏的事故概率较小，污染环境的可能性较小。

4.8.4 环境风险防范措施

1）泄漏事故风险防范措施

① 设置高液位报警系统，及时掌握油罐情况，如果发生泄漏，能够及时发现，及时采取措施；

② 对储油罐易发生泄漏的部位实行定期的巡检制度，及时发现问题，尽快解决：加强油罐与管道系统的管理与维修，确保油料贮存系统密闭性良好；

③ 围堰

本项目撬装加油装置重点污染区采取等效黏土防渗层 \(Mb \geq 6.0 \text{m} \)，\(K \leq 1 \times 10^{-7} \text{cm/s} \)；并在撬装式油罐的周边设高度 0.6m 的砖砌围堰，围堰内有效容积大于 25m³，内外表面抹防水砂浆 20mm 厚。

2）火灾事故风险防范措施

阻隔防爆橇装加油装置的储油罐进行了阻隔防爆技术改造，阻隔防爆技术改造是将阻隔防爆材料（阻隔防爆材料是用特种铝合金组成的一种网状结构材料）按一定密度方式填充在储存有易燃、易爆液体的储油罐中，当遇到明火、静电、撞击、雷击、枪击、焊接、意外猛烈撞击事故时都不会发生爆炸事
故，但本次评价要求项目仍需做好以下防控工作。

①做到灭火装置完整有效，一旦发生加油机火灾、爆炸事故时能及时启动，进行灭火。

②加油装置应设置醒目的防火、禁止吸烟及明火标志，严格执行防火、防爆、防雷击、防毒害等各项要求。

③从业人员应委托专业部门或本部门内培训，经考核合格后上岗，在今后经营过程中根据《加油站作业安全规范》（AQ3010-2007）对本站安全管理要求进行完善。

④场站内应安装设置非甲烷总烃浓度自动报警装置，随时监测非甲烷总烃的浓度。

⑤针对运营中可能发生的异常现象和存在的安全隐患，设置合理可行的技术措施，制定严格的操作规程。

⑥加油区周围必须设置警示标志，安装围油设施，配备吸油装置，加强区域通风。

⑦建立健全安全、环境管理体系及高效的安全生产机构，一旦发生事故，要做到快速、高效、安全处置。柴油燃烧、爆炸产生的污染物主要为 CO 和 CO₂，两种物质均不溶于水。本站内设有灭火器和消防沙池，主要使用站内的消防器材进行灭火，灭火后的地面冲洗通过控制用水的方式降低废水产生量，废水收集至站内初期雨水收集后排入污水处理站处理达标后外排。

3）危险废物储存防范措施
危险废物依托站内现有危废暂存间，危废暂存间已进行防渗漏处理，设置明显专用标志，禁止混入不相容的危险废物。定期交由有资质的危废处置单位转运处置时，严格按照《危险废物转移管理办法》填写危险废物转移五联单，并由双方单位保留备查。危废暂存箱应具有防风、防雨、防晒、防渗、防腐措施，并由专人管理，符合《危险废物贮存污染控制标准》（GB 18597-2023）的要求。

4）次生事故风险防范措施
①立即停止加油作业，并通知电控人员立即切断火灾危险区域所有电源，并设置警示标志，使用邻近的便携式消防器材对火势进行扑救；
②灭火同时，使用消火栓对火灾区域构筑物、建筑物进行喷水降温；

③为防止发生爆炸，在未切断泄漏源的情况下，严禁熄灭已稳定燃烧的火焰。待切断物料并降温后，再向稳定的火焰喷干粉覆盖火焰终止燃烧；

④对事故现场进行警戒，根据物料泄漏的扩散情况或火焰辐射热所涉及到的范围建立警戒区，并在通往事故现场的主要干道上实行交通管制，警戒区域的边界应设警示标志并有专人警戒，除应急处理人员以及必须坚守岗位的人员外，其他人员禁止进入警戒区；

⑤事故区域内所有机动车严禁启动；

⑥明火扑灭后，火灾区域内的物质立即转移至安全区域。

4.8.5 应急要求

1）应急措施

①泄漏应急措施：迅速撤离泄漏污染区人员至安全区，并进行隔离，严格限制出入。切断火源。建议应急处置人员戴自给正压式呼吸器，穿消防防护服。尽可能切断泄漏源，防止进入下水道、输油管沟等限制性空间。少量泄漏时可用砂土、蛭石或其它惰性材料吸收；大量泄漏时可采用防爆泵转移至槽车或专用收集器内，回收或交由具有废油处理能力和危险废物经营资质的单位进行妥善处置。

②火灾应急措施：当发生火灾事故时应先按照操作规范进行安全自救。在保证安全的情况下采取灭火措施，切断火势蔓延的途径，冷却和疏散受火势威胁的密闭容器和可燃物，控制燃烧范围，并积极抢救受伤和被困人员。事故发生时立即组织救援小组，封锁现场，疏散人员，并通知环保、安全等相关部门人员，启动应急救护程序。若油品发生泄漏，导致火灾、爆炸等事故，在做好堵漏、灭火的同时，应做好临近油罐、加油设备等的保护工作，避免连锁效应；并做好消防废水收集措施，避免流出厂区和进入雨水管网。发生火灾事故时，以干粉、二氧化碳灭火器灭火为主，消防水灭火为辅，灭火产生的消防废水通过厂内的截排水沟、设置临时围堰或防水沙袋堵截在厂区范围内，并关闭厂区雨水总排放阀，临时引流消防废水收集至厂区隔油池处理。在发生安全或风险事故后，加油站应尽快报警，通知周边人群疏散至加油站上风向，并防止人群围观，也可利用站内已有安全灭火设施在事故初期紧急采取相应措施避免
和控制事故危害程度的加大。在事故状态严重时，必须依托当地政府或社会单位的应急救援系统，共享附近地区的应急救援资源。灭火工作结束后，对现场进行恢复清理，对环境可能受到污染范围内的空气、水样、土壤进行取样监测，判定污染影响程度和采取必要的处理。排查和鉴定事故原因，编制事故评估报告，补充和修改事故防范措施和应急方案。

2）应急预案

应急预案是在贯彻预防为主的前提下，对建设项目可能出现的突发性事故，为及时控制危害源，抢救遇害人员，指导项目周边居民对毒物的防护或危险环境的组织撤离，为减轻和消除危害后果而组织社会救援活动的预想方案。

根据《国家突发公共事件总体应急预案》、《国家安全生产应急救援预案》、《国务院关于进一步加强安全生产工作的决定》、《生产经营单位安全生产事故应急预案编制导则》以及最新环境风险控制的要求，通过对污染事故的风险评价，该加油站应制定重大泄漏事故发生后的事故报警求助、事故紧急处理、事故隐患的消除及突发性事故应急方法等，并进行演练。在实施抢险中，应急救援人员按照预案所设定的分工任务，实施扑救。

4.8.6 分析结论

本项目采取环境风险管理和防范措施后，环境风险可防可控，事故状态下不会对周围环境及人群造成大的环境危害，风险水平可接受。
五、环境保护措施监督检查清单

<table>
<thead>
<tr>
<th>内容要素</th>
<th>排放口(编号、名称)/污染源</th>
<th>污染物项目</th>
<th>环境保护措施</th>
<th>执行标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>大气环境</td>
<td>厂界</td>
<td>非甲烷总烃、气液比、液阻、密闭性、泄漏检测值</td>
<td>卸油油气经一次油气回收系统处理后无组织排放，设置通气立管2根，高度均为4.8m。</td>
<td>《加油站大气污染物排放标准》(GB20952-2020)</td>
</tr>
<tr>
<td>地表水环境</td>
<td>污水处理站排放口 (地面冲洗废水和初期雨水)</td>
<td>COD、SS、石油类</td>
<td>初期雨水和地面冲洗废水经截流沟收集后进入初期雨水收集池，再排入现有污水处理站（处理能力350m³/d）处理，达标后排入市政污水管网，进入走马乐园污水处理厂处理达标准后排入梁滩河。</td>
<td>《污水综合排放标准》(GB8978-1996)三级标准、《生活垃圾填埋场污染控制标准》(GB16889-2008)表2</td>
</tr>
<tr>
<td>声环境</td>
<td>机械设备</td>
<td>噪声</td>
<td>选用低噪声设备，采取基础减振，站内出入口设减速、禁鸣标志，控制车速等措施。</td>
<td>《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准</td>
</tr>
<tr>
<td>电磁辐射</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>固体废物</td>
<td>设备检修废物、清罐废物、废弃的含油抹布收集后暂存至危废暂存间（面积约20m²），定期委托有相应资质单位进行处置。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壤及地下水污染防治措施</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>拆装加油装置罐体外部进行了喷砂抛丸处理，喷涂有环氧富锌防锈底漆一环氧富锌中漆一聚胺脂面漆，撬座部分喷涂黑黄色警示标志防锈漆，具有一定防渗效果；罐体周边设有容积不小于25m³的围堰，加油装置配备一次油气回收系统，加、卸油过程中不小心洒漏的油品通过吸油毡布处理，建设单位要求加油工人严格按照规程作业。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>加油装置区做好分区防渗。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生态保护措施</td>
<td>不涉及</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>环境风险防范措施</td>
<td>①柴油罐采用双层钢制油罐，储罐设置液位仪，具有高液位报警功能，设置防渗检测系统，油罐采取卸油时防满溢措施、出油管线最低点设置检测点等； ②设置加油站管理系统，油罐等设施结构及安装按照相关要求完善； ③卸油区、加油区周围设置截流沟，可将事故废水导至初期雨水收集池； ④加强对设备、管道的定期检修维护，站内设立禁止吸烟、禁止使用手机等警示牌，严禁明火等； ⑤加油站内应按照规范要求备足灭火器材及消防沙等消防器材； ⑥加强员工的安全技术培训，提高安全防范意识； ⑦采用分区防渗措施：一般防渗区包括站房、站内道路等，重点防渗区包括撬装加油装置地面基础、危废暂存间、围堰； ⑧制定应急救援预案并定期演练风险物质泄漏、火灾爆炸防范措施； ⑨建立健全环保管理机制和各项环保规章制度，落实岗位环保责任制，加强环境风险防范工作，防止事故排放导致环境问题。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他环境管理要求</td>
<td>制定环境管理制度，要求在生产过程中严格执行。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
六、结论

重庆市固体废弃物运输有限公司西部分公司走马垃圾站撬装加油装置项目符合国家产业政策，选址合理，其建设过程和运营期产生的各类污染物在采取污染防治措施后可得到有效的控制，外排污染物对环境影响小。从环境保护角度分析，本项目环境影响可行。
<table>
<thead>
<tr>
<th>分类</th>
<th>项目</th>
<th>污染物名称</th>
<th>现有工程排放量（固体废物产生量）①</th>
<th>现有工程许可排放量②</th>
<th>在建工程排放量（固体废物产生量）③</th>
<th>本项目排放量（固体废物产生量）④</th>
<th>以新带老削减量（新建项目不填）⑤</th>
<th>本项目建成后全厂排放量（固体废物产生量）⑥</th>
<th>变化量⑦</th>
</tr>
</thead>
<tbody>
<tr>
<td>废气</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>废水</td>
<td>COD</td>
<td>5.667</td>
<td></td>
<td>0.0001</td>
<td>0</td>
<td>5.6671</td>
<td>+0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>1.113</td>
<td></td>
<td>0.00004</td>
<td>0</td>
<td>1.11304</td>
<td>+0.00004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>石油类</td>
<td>1.113</td>
<td></td>
<td>0.00004</td>
<td>0</td>
<td>1.113004</td>
<td>+0.000004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>固废</td>
<td>设备检修废物</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
<td>+0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>清罐废物</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
<td>+0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>废弃的含油抹布</td>
<td>1</td>
<td>0.01</td>
<td>0</td>
<td>1.01</td>
<td>+0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：⑥=①+③+④-⑤；⑦=⑥-①